Suppr超能文献

通过耳部脑电图检测睡眠期间的肌肉活动

Muscle Activity Detection during Sleep by Ear-EEG.

作者信息

Tabar Yousef R, Mikkelsen Kaare B, Rank Mike Lind, Christian Hemmsen Martin, Kidmose Preben

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1007-1010. doi: 10.1109/EMBC44109.2020.9176365.

Abstract

Muscle activation during sleep is an important biomarker in the diagnosis of several sleep disorders and neurodegenerative diseases. Muscle activity is typically assessed manually based on the EMG channels from polysomnography recordings. Ear-EEG provides a mobile and comfortable alternative for sleep assessment. In this study, ear-EEG was used to automatically detect muscle activities during sleep. The study was based on a dataset comprising four full night recordings from 20 healthy subjects with concurrent polysomnography and ear-EEG. A binary label, active or relax, extracted from the chin EMG was assigned to selected 30 s epoch of the sleep recordings in order to train a classifier to predict muscle activation. We found that the ear-EEG based classifier detected muscle activity with an accuracy of 88% and a Cohen's kappa value of 0.71 relative to the labels derived from the chin EMG channels. The analysis also showed a significant difference in the distribution of muscle activity between REM and non-REM sleep.

摘要

睡眠期间的肌肉激活是诊断多种睡眠障碍和神经退行性疾病的重要生物标志物。肌肉活动通常基于多导睡眠图记录中的肌电图通道进行手动评估。耳部脑电图为睡眠评估提供了一种便捷舒适的替代方法。在本研究中,耳部脑电图被用于自动检测睡眠期间的肌肉活动。该研究基于一个数据集,该数据集包含来自20名健康受试者的四个整夜记录,同时有多导睡眠图和耳部脑电图。从下巴肌电图中提取的二元标签(活跃或放松)被分配到睡眠记录中选定的30秒时段,以便训练一个分类器来预测肌肉激活。我们发现,基于耳部脑电图的分类器检测肌肉活动的准确率为88%,相对于来自下巴肌电图通道的标签,科恩卡帕值为0.71。分析还显示,快速眼动睡眠和非快速眼动睡眠之间的肌肉活动分布存在显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验