Suppr超能文献

使用卷积神经网络对不同回声水平的腓肠肌内侧超声图像进行自动分割。

Automatic segmentation of ultrasound images of gastrocnemius medialis with different echogenicity levels using convolutional neural networks.

作者信息

Marzola Francesco, Alfen Nens van, Salvi Massimo, Santi Bruno De, Doorduin Jonne, Meiburger Kristen M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2113-2116. doi: 10.1109/EMBC44109.2020.9176343.

Abstract

The purpose of this study was to develop an automatic method for the segmentation of muscle cross-sectional area on transverse B-mode ultrasound images of gastrocnemius medialis using a convolutional neural network(CNN). In the provided dataset images with both normal and increased echogenicity are present. The manually annotated dataset consisted of 591 images, from 200 subjects, 400 relative to subjects with normal echogenicity and 191 to subjects with augmented echogenicity. From the DICOM files, the image has been extracted and processed using the CNN, then the output has been post-processed to obtain a finer segmentation. Final results have been compared to the manual segmentations. Precision and Recall scores as mean ± standard deviation for training, validation, and test sets are 0.96 ± 0.05, 0.90 ± 0.18, 0.89 ± 0.15 and 0.97 ±0.03, 0.89± 0.17, 0.90 ± 0.14 respectively. The CNN approach has also been compared to another automatic algorithm, showing better performances. The proposed automatic method provides an accurate estimation of muscle cross-sectional area in muscles with different echogenicity levels.

摘要

本研究的目的是开发一种利用卷积神经网络(CNN)对腓肠肌内侧横断B超图像上的肌肉横截面积进行分割的自动方法。在提供的数据集中,存在回声正常和回声增强的图像。手动标注的数据集包含来自200名受试者的591张图像,其中400张来自回声正常的受试者,191张来自回声增强的受试者。从DICOM文件中提取图像并使用CNN进行处理,然后对输出结果进行后处理以获得更精细的分割。最终结果与手动分割结果进行了比较。训练集、验证集和测试集的精确率和召回率得分(均值±标准差)分别为0.96±0.05、0.90±0.18、0.89±0.15和0.97±0.03、0.89±0.17、0.90±0.14。还将CNN方法与另一种自动算法进行了比较,结果显示其性能更佳。所提出的自动方法能够准确估计不同回声水平肌肉的横截面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验