Hensley Nicholai M, Ellis Emily A, Leung Nicole Y, Coupart John, Mikhailovsky Alexander, Taketa Daryl A, Tessler Michael, Gruber David F, De Tomaso Anthony W, Mitani Yasuo, Rivers Trevor J, Gerrish Gretchen A, Torres Elizabeth, Oakley Todd H
Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
Mol Ecol. 2021 Apr;30(8):1864-1879. doi: 10.1111/mec.15673. Epub 2020 Nov 5.
Understanding the genetic causes of evolutionary diversification is challenging because differences across species are complex, often involving many genes. However, cases where single or few genetic loci affect a trait that varies dramatically across a radiation of species provide tractable opportunities to understand the genetics of diversification. Here, we begin to explore how diversification of bioluminescent signals across species of cypridinid ostracods ("sea fireflies") was influenced by evolution of a single gene, cypridinid-luciferase. In addition to emission spectra ("colour") of bioluminescence from 21 cypridinid species, we report 13 new c-luciferase genes from de novo transcriptomes, including in vitro assays to confirm function of four of those genes. Our comparative analyses suggest some amino acid sites in c-luciferase evolved under episodic diversifying selection and may be associated with changes in both enzyme kinetics and colour, two enzymatic functions that directly impact the phenotype of bioluminescent signals. The analyses also suggest multiple other amino acid positions in c-luciferase evolved neutrally or under purifying selection, and may have impacted the variation of colour of bioluminescent signals across genera. Previous mutagenesis studies at candidate sites show epistatic interactions, which could constrain the evolution of c-luciferase function. This work provides important steps toward understanding the genetic basis of diversification of behavioural signals across multiple species, suggesting different evolutionary processes act at different times during a radiation of species. These results set the stage for additional mutagenesis studies that could explicitly link selection, drift, and constraint to the evolution of phenotypic diversification.
理解进化多样化的遗传原因具有挑战性,因为物种间的差异很复杂,通常涉及许多基因。然而,单个或少数基因座影响一个在一系列物种中显著变化的性状的情况,为理解多样化的遗传学提供了易于处理的机会。在这里,我们开始探索跨萤虾类介形虫(“海萤”)物种的生物发光信号多样化是如何受到单个基因——萤虾荧光素酶的进化影响的。除了21种萤虾类物种生物发光的发射光谱(“颜色”)外,我们还从从头转录组中报告了13个新的c - 荧光素酶基因,包括对其中四个基因功能进行确认的体外测定。我们的比较分析表明,c - 荧光素酶中的一些氨基酸位点在间歇性的多样化选择下进化,可能与酶动力学和颜色的变化有关,这两种酶功能直接影响生物发光信号的表型。分析还表明,c - 荧光素酶中的多个其他氨基酸位置是中性进化或在纯化选择下进化的,可能影响了不同属生物发光信号颜色的变化。先前在候选位点进行的诱变研究显示了上位性相互作用,这可能会限制c - 荧光素酶功能的进化。这项工作为理解多个物种行为信号多样化的遗传基础迈出了重要一步,表明不同的进化过程在物种辐射的不同时间起作用。这些结果为进一步的诱变研究奠定了基础,这些研究可以明确地将选择、漂变和限制与表型多样化的进化联系起来。