University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France.
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.
J Am Chem Soc. 2020 Oct 21;142(42):18251-18265. doi: 10.1021/jacs.0c09254. Epub 2020 Oct 9.
Since its discovery in 1938, hydroformylation has been thoroughly investigated and broadly applied in industry (>10 metric ton yearly). However, the ability to precisely control its regioselectivity with well-established Rh- or Co-catalysts has thus far proven elusive, thereby limiting access to many synthetically valuable aldehydes. Pd-catalysts represent an appealing alternative, yet their use remains sparse due to undesired side-processes. Here, we report a highly selective and exceptionally active catalyst system that is driven by a novel activation strategy and features a unique Pd(I)-Pd(I) mechanism, involving an iodide-assisted binuclear step to release the product. This method enables β-selective hydroformylation of a large range of alkenes and alkynes, including sensitive starting materials. Its utility is demonstrated in the synthesis of antiobesity drug Rimonabant and anti-HIV agent PNU-32945. In a broader context, the new mechanistic understanding enables the development of other carbonylation reactions of high importance to chemical industry.
自 1938 年发现以来,氢甲酰化反应得到了深入的研究,并在工业上得到了广泛的应用(每年超过 10 公吨)。然而,迄今为止,人们一直难以用经过充分验证的 Rh 或 Co 催化剂精确控制其区域选择性,从而限制了许多具有合成价值的醛的获得。Pd 催化剂是一种很有吸引力的替代品,但由于存在不需要的副反应,其使用仍然很少。在这里,我们报道了一种高选择性和异常活泼的催化剂体系,它采用了一种新颖的激活策略,并具有独特的 Pd(I)-Pd(I)机制,涉及碘化物辅助的双核步骤以释放产物。该方法能够实现一系列烯烃和炔烃的β-选择性氢甲酰化,包括敏感的起始原料。该方法在抗肥胖药物利莫那班和抗 HIV 药物 PNU-32945 的合成中得到了证明。从更广泛的意义上讲,新的机理理解能够开发对化学工业具有重要意义的其他羰基化反应。