Lehmer Owen R, Catling David C
Dept. Earth and Space Sciences, Box 351310, University of Washington, Seattle, WA.
MS 239-4, Space Science Division, NASA Ames Research Center, Moffett Field, CA.
Astrophys J. 2017 Aug 20;845(2). doi: 10.3847/1538-4357/aa8137. Epub 2017 Aug 18.
Recent observations and analysis of low mass (<10 ), exoplanets have found that rocky planets only have radii up to 1.5-2 . Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low mass planets do not necessarily form thick atmospheres of a few wt. %, or the thick atmospheres on these planets easily escape driven by x-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at a mean radius of 1.76±0.38 (2σ) around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low mass planets results in complete loss of atmospheres during the ~100 Myr phase of stellar XUV saturation. In contrast, more massive planets have less distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a "valley") in the 1.5-2 range.
近期对低质量(<10 )系外行星的观测与分析发现,岩石行星的半径最大仅为1.5 - 2 。对于岩石行星和气态包裹行星(或可能的水世界)之间二分法的成因,存在两种普遍假设:要么低质量行星不一定会形成质量占比达百分之几的浓厚大气层,要么这些行星上的浓厚大气层在年轻母恒星发出的X射线和极紫外线(XUV)辐射驱动下容易逃逸。在此我们表明,在类日恒星周围,由于流体动力学逃逸导致的岩石行星和气态包裹行星之间的界限最有可能出现在平均半径为1.76±0.38(2σ) 处。我们使用从合理参数范围内随机抽取的10000个参数组合,在广泛的可能模型输入范围内研究了由流体动力学逃逸预测的岩石行星半径极限。我们发现岩石行星和气态包裹行星之间的界限与观测到的界限相符。在低质量行星极度膨胀的原始大气层中,可用于XUV吸收的大横截面导致在恒星XUV饱和的约100百万年阶段大气层完全丧失。相比之下,质量更大的行星大气层膨胀程度较小,逃逸较少,因此通过XUV饱和保留了浓厚大气层,然后随着XUV和逃逸通量随时间下降而无限期保留。我们的模型与系外行星数据之间的一致性使我们得出结论,流体动力学逃逸似乎可以解释观测到的岩石行星大小上限以及1.5 - 2 范围内行星数量稀少(一个“低谷”)的现象。