Suppr超能文献

电生理学中的数字健康与新冠疫情全球大流行

Digital health in electrophysiology and the COVID-19 global pandemic.

作者信息

Slotwiner David J, Al-Khatib Sana M

机构信息

Weill Cornell Medicine Population Health Sciences, New York, New York.

Duke University Medical Center and Duke Clinical Research Institute, Durham, North Carolina.

出版信息

Heart Rhythm O2. 2020 Dec;1(5):385-389. doi: 10.1016/j.hroo.2020.09.003. Epub 2020 Oct 3.

Abstract

The tools of digital health are facilitating a much-needed paradigm shift to a more patient-centric health care delivery system, yet our health care infrastructure is firmly rooted in a 20th-century model that was not designed to receive medical data from outside the traditional medical environment. COVID-19 has accelerated this adoption and illustrated the challenges that lie ahead as we make this shift. The diverse ecosystem of digital health tools share 1 feature in common: they generate data that must be processed, triaged, acted upon, and incorporated into the longitudinal electronic health record. Critical abnormal findings must be identified and acted upon rapidly, while semi-urgent and noncritical data and trends may be reviewed within a less urgent timeline. Clinically irrelevant findings, which presently comprise a significant percentage of the alerts, ideally would be removed to optimize the high-cost, high-value resource (ie, the clinicians' attention and time). We need to transform our established health care infrastructure, technologies, and workflows to be able to safely, effectively, and efficiently manage the vast quantities of data that these tools will generate. This must include new technologies from industry as well as expert consensus documents from medical specialty societies, including the Heart Rhythm Society. Ultimately, research will be fundamental to inform effective development and implementation of these tools.

摘要

数字健康工具正在推动向更以患者为中心的医疗服务体系进行急需的范式转变,然而我们的医疗基础设施却深深植根于20世纪的模式,该模式并非为接收传统医疗环境之外的医疗数据而设计。新冠疫情加速了这种应用,并凸显了我们在进行这一转变时面临的挑战。数字健康工具的多样化生态系统有一个共同特点:它们生成的数据必须经过处理、分类、采取行动并纳入纵向电子健康记录。必须迅速识别并处理关键的异常发现,而半紧急和非关键数据及趋势可在不太紧急的时间范围内进行审查。目前构成大量警报的临床无关发现,理想情况下应予以消除,以优化高成本、高价值的资源(即临床医生的注意力和时间)。我们需要改造现有的医疗基础设施、技术和工作流程,以便能够安全、有效且高效地管理这些工具将生成的大量数据。这必须包括来自行业的新技术以及医学专业协会(包括心律协会)的专家共识文件。最终,研究对于为这些工具的有效开发和实施提供信息至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbfa/8183880/3927f8b88f14/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验