Suppr超能文献

荧光标记纤维素纳米纤维用于检测和损耗分析。

Fluorescently labeled cellulose nanofibrils for detection and loss analysis.

机构信息

Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.

RISE Research Institutes of Sweden, SE-11428, Stockholm, Sweden; Linköping University, Department of Physics, Chemistry and Biology, SE-58183, Linköping, Sweden.

出版信息

Carbohydr Polym. 2020 Dec 15;250:116943. doi: 10.1016/j.carbpol.2020.116943. Epub 2020 Aug 26.

Abstract

Fluorescently labeled cellulose nanofibrils (CNFs) were used to evaluate CNF leaching from paper according to standard safety assays for food contact materials. Enzymatically pretreated pulp was first labeled with 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein hydrochloride (DTAF), followed by homogenization to produce fluorescent CNFs of varying degrees of fibrillation. Labeling at the μmolar DTAF/g cellulose level imparted quantitative ppb fluorescence detection of CNFs (LOD of approximately 20 ppb), without significantly altering other material properties, suggesting that DTAF-labeled CNFs are an appropriate mimic for native CNFs and that this approach can be used to detect low CNF concentrations. Cold and hot-water extractions of laboratory papers (100 % CNFs and CNF-fiber blended papers) showed loss values below 3 wt% CNFs, with the finest CNF quality showing the least loss overall and with greater loss experienced under hot water conditions compared with cold water. DTAF-labeled CNFs can be used to address questions related to CNF distribution, localization, and loss.

摘要

荧光标记的纤维素纳米纤维(CNF)被用于根据食品接触材料的标准安全检测评估纸张中 CNF 的浸出情况。首先用 5-([4,6-二氯三嗪-2-基]氨基)荧光素盐酸盐(DTAF)对酶预处理的纸浆进行标记,然后进行均化以产生不同程度原纤化的荧光 CNF。在μmolar DTAF/纤维素 g 的水平进行标记赋予了 CNF 的定量 ppb 荧光检测(LOD 约为 20 ppb),而不会显著改变其他材料性能,这表明 DTAF 标记的 CNF 是天然 CNF 的合适模拟物,并且这种方法可用于检测低浓度的 CNF。实验室纸张(100% CNF 和 CNF-纤维混合纸)的冷水和热水萃取显示出低于 3wt% CNF 的损失值,其中最细的 CNF 质量总体上损失最小,并且与冷水相比,在热水条件下损失更大。DTAF 标记的 CNF 可用于解决与 CNF 分布、定位和损失相关的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验