Elliott Andrew, Chiu Angus, Bazzi Marya, Reinert Gesine, Cucuringu Mihai
The Alan Turing Institute, London, UK.
Department of Statistics, University of Oxford, Oxford, UK.
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20190783. doi: 10.1098/rspa.2019.0783. Epub 2020 Sep 9.
Empirical networks often exhibit different meso-scale structures, such as community and core-periphery structures. Core-periphery structure typically consists of a well-connected core and a periphery that is well connected to the core but sparsely connected internally. Most core-periphery studies focus on undirected networks. We propose a generalization of core-periphery structure to directed networks. Our approach yields a family of core-periphery block model formulations in which, contrary to many existing approaches, core and periphery sets are edge-direction dependent. We focus on a particular structure consisting of two core sets and two periphery sets, which we motivate empirically. We propose two measures to assess the statistical significance and quality of our novel structure in empirical data, where one often has no ground truth. To detect core-periphery structure in directed networks, we propose three methods adapted from two approaches in the literature, each with a different trade-off between computational complexity and accuracy. We assess the methods on benchmark networks where our methods match or outperform standard methods from the literature, with a likelihood approach achieving the highest accuracy. Applying our methods to three empirical networks-faculty hiring, a world trade dataset and political blogs-illustrates that our proposed structure provides novel insights in empirical networks.
经验性网络通常呈现出不同的中尺度结构,如社区结构和核心-边缘结构。核心-边缘结构通常由一个连接良好的核心和一个与核心连接良好但内部连接稀疏的边缘组成。大多数核心-边缘研究集中在无向网络上。我们提出了一种将核心-边缘结构推广到有向网络的方法。我们的方法产生了一系列核心-边缘块模型公式,与许多现有方法不同的是,核心集和边缘集是依赖于边的方向的。我们关注一种由两个核心集和两个边缘集组成的特定结构,我们通过实证来激发这种结构。我们提出了两种方法来评估我们新结构在实证数据中的统计显著性和质量,在实证数据中通常没有真实的基础情况。为了检测有向网络中的核心-边缘结构,我们从文献中的两种方法改编提出了三种方法,每种方法在计算复杂度和准确性之间有不同的权衡。我们在基准网络上评估这些方法,我们的方法与文献中的标准方法相当或更优,似然方法达到了最高的准确性。将我们的方法应用于三个实证网络——教师招聘、一个世界贸易数据集和政治博客——表明我们提出的结构为实证网络提供了新的见解。