Tu Kejun, Tranca Diana, Rodríguez-Hernández Fermín, Jiang Kaiyue, Huang Senhe, Zheng Qi, Chen Ming-Xi, Lu Chenbao, Su Yuezeng, Chen Zhenying, Mao Haiyan, Yang Chongqing, Jiang Jinyang, Liang Hai-Wei, Zhuang Xiaodong
The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, China.
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, China.
Adv Mater. 2020 Nov;32(46):e2005433. doi: 10.1002/adma.202005433. Epub 2020 Oct 15.
Heterostructures exhibit considerable potential in the field of energy conversion due to their excellent interfacial charge states in tuning the electronic properties of different components to promote catalytic activity. However, the rational preparation of heterostructures with highly active heterosurfaces remains a challenge because of the difficulty in component tuning, morphology control, and active site determination. Herein, a novel heterostructure based on a combination of RuMo nanoalloys and hexagonal N-doped carbon nanosheets is designed and synthesized. In this protocol, metal-containing anions and layered double hydroxides are employed to control the components and morphology of heterostructures, respectively. Accordingly, the as-made RuMo-nanoalloys-embedded hexagonal porous carbon nanosheets are promising for the hydrogen evolution reaction (HER), resulting in an extremely small overpotential (18 mV), an ultralow Tafel slope (25 mV dec ), and a high turnover frequency (3.57 H s ) in alkaline media, outperforming current Ru-based electrocatalysts. First-principle calculations based on typical 2D N-doped carbon/RuMo nanoalloys heterostructures demonstrate that introducing N and Mo atoms into C and Ru lattices, respectively, triggers electron accumulation/depletion regions at the heterosurface and consequently reduces the energy barrier for the HER. This work presents a convenient method for rational fabrication of carbon-metal heterostructures for highly efficient electrocatalysis.
由于异质结构在调节不同组分的电子性质以促进催化活性方面具有优异的界面电荷态,因此在能量转换领域展现出巨大潜力。然而,由于在组分调控、形貌控制和活性位点确定方面存在困难,合理制备具有高活性异质表面的异质结构仍然是一项挑战。在此,设计并合成了一种基于RuMo纳米合金和六方氮化碳纳米片组合的新型异质结构。在该方案中,分别采用含金属阴离子和层状双氢氧化物来控制异质结构的组分和形貌。因此,所制备的嵌入RuMo纳米合金的六方多孔碳纳米片在析氢反应(HER)中具有良好前景,在碱性介质中表现出极小的过电位(18 mV)、极低的塔菲尔斜率(25 mV dec⁻¹)和高周转频率(3.57 H s⁻¹),优于目前的Ru基电催化剂。基于典型二维氮化碳/RuMo纳米合金异质结构的第一性原理计算表明,分别将N和Mo原子引入C和Ru晶格中,会在异质表面引发电子积累/耗尽区域,从而降低析氢反应的能垒。这项工作为合理制备用于高效电催化的碳 - 金属异质结构提供了一种简便方法。