Suppr超能文献

一种用于识别生物过程中 miRNA-mRNA 相互作用的伪时间因果关系方法。

A pseudotemporal causality approach to identifying miRNA-mRNA interactions during biological processes.

机构信息

UniSA STEM, University of South Australia, Adelaide, South Australia, 5095 Mawson Lakes, Australia.

出版信息

Bioinformatics. 2021 May 5;37(6):807-814. doi: 10.1093/bioinformatics/btaa899.

Abstract

MOTIVATION

microRNAs (miRNAs) are important gene regulators and they are involved in many biological processes, including cancer progression. Therefore, correctly identifying miRNA-mRNA interactions is a crucial task. To this end, a huge number of computational methods has been developed, but they mainly use the data at one snapshot and ignore the dynamics of a biological process. The recent development of single cell data and the booming of the exploration of cell trajectories using 'pseudotime' concept have inspired us to develop a pseudotime-based method to infer the miRNA-mRNA relationships characterizing a biological process by taking into account the temporal aspect of the process.

RESULTS

We have developed a novel approach, called pseudotime causality, to find the causal relationships between miRNAs and mRNAs during a biological process. We have applied the proposed method to both single cell and bulk sequencing datasets for Epithelia to Mesenchymal Transition, a key process in cancer metastasis. The evaluation results show that our method significantly outperforms existing methods in finding miRNA-mRNA interactions in both single cell and bulk data. The results suggest that utilizing the pseudotemporal information from the data helps reveal the gene regulation in a biological process much better than using the static information.

AVAILABILITY AND IMPLEMENTATION

R scripts and datasets can be found at https://github.com/AndresMCB/PTC.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

microRNAs(miRNAs)是重要的基因调控因子,它们参与许多生物过程,包括癌症的进展。因此,正确识别 miRNA-mRNA 相互作用是一项至关重要的任务。为此,已经开发了大量的计算方法,但它们主要使用一个时间点的数据,而忽略了生物过程的动态。单细胞数据的最新发展和使用“伪时间”概念探索细胞轨迹的热潮启发我们开发了一种基于伪时间的方法,通过考虑过程的时间方面来推断描述生物过程的 miRNA-mRNA 关系。

结果

我们开发了一种新的方法,称为伪时间因果关系,以在生物过程中找到 miRNAs 和 mRNAs 之间的因果关系。我们将提出的方法应用于上皮细胞到间充质转化的单细胞和批量测序数据集,这是癌症转移的关键过程。评估结果表明,我们的方法在单细胞和批量数据中发现 miRNA-mRNA 相互作用的性能明显优于现有方法。结果表明,利用数据中的伪时间信息比使用静态信息更好地揭示生物过程中的基因调控。

可用性和实施

R 脚本和数据集可在 https://github.com/AndresMCB/PTC 上找到。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验