Suppr超能文献

利用纳米颗粒分散状态调节氧化还原液流电池纳米相分离离聚物纳米复合材料的钒离子选择性

Leveraging Nanoparticle Dispersion State To Tune Vanadium Ion Selectivity of Nanophase-Segregated Ionomer Nanocomposites for Redox Flow Batteries.

作者信息

Domhoff Allison, Balwani Apoorv, Martin Tyler B, Davis Eric M

机构信息

Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States.

National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR), Gaithersburg, Maryland 20899, United States.

出版信息

ACS Appl Energy Mater. 2019;2(12). doi: https://doi.org/10.1021/acsaem.9b01443.

Abstract

Ionomer nanocomposites provide a promising solution to address ion crossover issues inherent to traditional ion-containing membranes used in batteries for grid-scale energy storage (e.g., vanadium redox flow batteries). Herein, we investigate the impact of nanoparticle surface chemistry on nanoparticle dispersion, membrane morphology, and vanadium ion permeability in a series of Nafion nanocomposites. Specifically, silica nanoparticles (SiNPs) were functionalized with various chemical moieties, seven in total, that electrostatically interact, either attractively or repulsively, with the sulfonic acid groups that coalesce to form the ionic network within Nafion. As seen from electron microscopy analysis of the nanocomposites, SiNPs with sulfonic acid end-functionality were, on average, well dispersed within the ionomer membrane, though increased vanadium ion permeability, as compared to pristine (or unmodified) Nafion, was observed and attributed to changes in the Donnan potential of the system. In contrast, SiNPs with amine end-functionality were, on average, observed to form large aggregates within the ionomer membrane. Surprisingly, nanocomposites containing a higher degree of nanoparticle aggregation demonstrated the lowest vanadium ion permeability. Fractal analysis of the low- small-angle neutron scattering data suggests that the interface between the ionomer and the SiNP surface transitions from rough to smooth when the nanoparticle surface is changed from sulfonic acid-functionalized to amine-functionalized.

摘要

离聚物纳米复合材料为解决用于电网规模储能电池(如钒氧化还原液流电池)的传统含离子膜固有的离子交叉问题提供了一个有前景的解决方案。在此,我们研究了纳米颗粒表面化学对一系列Nafion纳米复合材料中纳米颗粒分散性、膜形态和钒离子渗透性的影响。具体而言,二氧化硅纳米颗粒(SiNPs)用总共七种不同的化学基团进行了功能化,这些基团与磺酸基团发生静电相互作用,这种相互作用可以是吸引性的,也可以是排斥性的,磺酸基团聚集形成Nafion中的离子网络。从纳米复合材料的电子显微镜分析可以看出,具有磺酸末端功能的SiNPs平均而言在离聚物膜中分散良好,不过与原始(或未改性)Nafion相比,观察到钒离子渗透性增加,这归因于系统唐南电位的变化。相比之下,平均而言,具有胺末端功能的SiNPs在离聚物膜中形成大的聚集体。令人惊讶的是,含有更高程度纳米颗粒聚集的纳米复合材料表现出最低的钒离子渗透性。对低小角中子散射数据的分形分析表明,当纳米颗粒表面从磺酸功能化变为胺功能化时,离聚物与SiNP表面之间的界面从粗糙转变为光滑。

相似文献

2
Role of Surface Chemistry on Nanoparticle Dispersion and Vanadium Ion Crossover in Nafion Nanocomposite Membranes.
ACS Appl Mater Interfaces. 2018 Oct 24;10(42):36385-36397. doi: 10.1021/acsami.8b11297. Epub 2018 Oct 9.
4
Capturing Hydrated Vanadium Ion Dynamics in Ionomer Nanocomposites Used for Redox Flow Batteries.
J Phys Chem B. 2024 Jun 13;128(23):5766-5780. doi: 10.1021/acs.jpcb.4c01203. Epub 2024 Jun 3.
5
Nafion-Based Proton Exchange Membranes for Vanadium Redox Flow Batteries.
ChemSusChem. 2025 May 19;18(10):e202402506. doi: 10.1002/cssc.202402506. Epub 2025 Mar 28.
7
A Cost-effective Nafion Composite Membrane as an Effective Vanadium-Ion Barrier for Vanadium Redox Flow Batteries.
Chem Asian J. 2020 Aug 3;15(15):2357-2363. doi: 10.1002/asia.202000140. Epub 2020 Apr 2.
8
Investigation of local environments in Nafion-SiO(2) composite membranes used in vanadium redox flow batteries.
Solid State Nucl Magn Reson. 2012 Apr;42:71-80. doi: 10.1016/j.ssnmr.2011.11.005. Epub 2011 Nov 22.
9
Amphoteric Ion-Exchange Membranes with Significantly Improved Vanadium Barrier Properties for All-Vanadium Redox Flow Batteries.
ChemSusChem. 2017 Jul 10;10(13):2767-2777. doi: 10.1002/cssc.201700610. Epub 2017 Jun 12.
10
Surface-Modified Approach to Fabricate Nafion Membranes Covalently Bonded with Polyhedral Oligosilsesquioxane for Vanadium Redox Flow Batteries.
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7845-7855. doi: 10.1021/acsami.1c20627. Epub 2022 Feb 1.

引用本文的文献

本文引用的文献

1
Dispersing Nanoparticles in a Polymer Film via Solvent Evaporation.
ACS Macro Lett. 2016 Jun 21;5(6):694-698. doi: 10.1021/acsmacrolett.6b00263. Epub 2016 May 19.
2
Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography.
ACS Macro Lett. 2015 Jan 20;4(1):1-5. doi: 10.1021/mz500606h. Epub 2014 Dec 20.
3
Controlling the Location of Nanoparticles in Polymer Blends by Tuning the Length and End Group of Polymer Brushes.
ACS Macro Lett. 2012 Jan 17;1(1):252-256. doi: 10.1021/mz200068p. Epub 2011 Dec 30.
4
Role of Surface Chemistry on Nanoparticle Dispersion and Vanadium Ion Crossover in Nafion Nanocomposite Membranes.
ACS Appl Mater Interfaces. 2018 Oct 24;10(42):36385-36397. doi: 10.1021/acsami.8b11297. Epub 2018 Oct 9.
5
Tuning the Perfluorosulfonic Acid Membrane Morphology for Vanadium Redox-Flow Batteries.
ACS Appl Mater Interfaces. 2016 Dec 21;8(50):34327-34334. doi: 10.1021/acsami.6b10744. Epub 2016 Dec 8.
7
Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica.
Int J Nanomedicine. 2014 Dec 15;9 Suppl 2(Suppl 2):29-40. doi: 10.2147/IJN.S57922. eCollection 2014.
9
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
10
Decoupling of ionic transport from segmental relaxation in polymer electrolytes.
Phys Rev Lett. 2012 Feb 24;108(8):088303. doi: 10.1103/PhysRevLett.108.088303. Epub 2012 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验