Suppr超能文献

大规模旋转工程编织水凝胶纤维用于软体机器人。

Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots.

机构信息

Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.

Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.

出版信息

ACS Nano. 2020 Nov 24;14(11):14929-14938. doi: 10.1021/acsnano.0c04382. Epub 2020 Oct 19.

Abstract

Efforts to impart responsiveness to environmental stimuli in artificial hydrogel fibers are crucial to intelligent, shape-memory electronics and weavable soft robots. However, owing to the vulnerable mechanical property, poor processability, and the dearth of scalable assembly protocols, such functional hydrogel fibers are still far from practical usage. Herein, we demonstrate an approach toward the continuous fabrication of an electro-responsive hydrogel fiber by using the self-lubricated spinning (SLS) strategy. The polyelectrolyte inside the hydrogel fiber endows it with a fast electro-response property. After solvent exchange with triethylene glycol (TEG), the maximum tensile strength of the hydrogel fiber increases from 114 kPa to 5.6 MPa, far superior to those hydrogel fiber-based actuators reported previously. Consequently, the flexible and mechanical stable hydrogel fiber is knitted into various complex geometries on demand such as a crochet flower, triple knot, thread tube, pentagram, and hollow cage. Additionally, the electrochemical-responsive ionic hydrogel fiber is capable of acting as soft robots underwater to mimic biological motions, such as Mobula-like flapping, jellyfish-mimicking grabbing, sea worm-mimicking multi-degree of freedom movements, and human finger-like smart gesturing. This work not only demonstrates an example for the large-scale production of previous infeasible hydrogel fibers, but also provides a solution for the rational design and fabrication of hydrogel woven intelligent devices.

摘要

努力赋予人工水凝胶纤维对环境刺激的响应能力对于智能形状记忆电子设备和可编织的软体机器人至关重要。然而,由于脆弱的机械性能、较差的加工性以及缺乏可扩展的组装协议,这种功能性水凝胶纤维仍然远远不能实际应用。在此,我们展示了一种通过使用自润滑纺丝(SLS)策略连续制造电响应水凝胶纤维的方法。水凝胶纤维内部的聚电解质赋予其快速的电响应特性。在与三甘醇(TEG)进行溶剂交换后,水凝胶纤维的最大拉伸强度从 114 kPa 增加到 5.6 MPa,远远超过以前报道的基于水凝胶纤维的致动器。因此,灵活且机械稳定的水凝胶纤维可以按需编织成各种复杂的几何形状,如钩针花、三结、线管、五角星和空心笼。此外,电化学响应的离子水凝胶纤维能够作为水下软体机器人模仿生物运动,如 Mobula 样拍打、水母状抓取、海虫状多自由度运动和人手指状智能手势。这项工作不仅展示了大规模生产以前不可行的水凝胶纤维的一个范例,还为水凝胶编织智能设备的合理设计和制造提供了一种解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验