Suppr超能文献

手持式和台式近红外光谱仪的性能比较:在海洋松(Pinus pinaster)树脂化学成分定量分析中的应用。

Comparison of the performances of handheld and benchtop near infrared spectrometers: Application on the quantification of chemical components in maritime pine (Pinus Pinaster) resin.

机构信息

CNRS/Université de Pau des Pays de L'Adour, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux, Xylomat, UMR5254, 40004, Mont de Marsan, France.

CNRS/Université de Pau des Pays de L'Adour, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux, Xylomat, UMR5254, 40004, Mont de Marsan, France.

出版信息

Talanta. 2021 Jan 1;221:121454. doi: 10.1016/j.talanta.2020.121454. Epub 2020 Aug 7.

Abstract

The aim of this study was to set up a chemometric procedure using near infrared spectra acquired with a low-cost handheld spectrometer (SCiO), to quantify the main chemical components of maritime pine (Pinus pinaster) resin, in view of using the SCiO as a quality control tool for the tapping industry. This study was carried out on samples of resin harvested during the summer of 2018, in Biscarosse, France. Spectral data were collected using both an SCiO, and a benchtop spectrometer (MultiPurpose Analyzer I) for baseline reference . The rates of turpentine and rosin were quantified by gas chromatography (turpentine composition), liquid chromatography (rosin composition), and a ventilated oven . The chemometric procedure involved spectra preprocessing and relevant subset selection with the DUPLEX algorithm. Lastly, Partial Least Squares (PLS) regression was used to calibrate the models. The quantitative predictive ability of the resulting PLS regression models was evaluated via Ratio of standard error of Performance to standard Deviation (RPD) statistics. The results show that spectra preprocessing enhanced the quantitative predictive ability. For MPA I, RPD > 3.5, which expresses some very good to excellent quantitative predictions of the models. For SCiO, RPD > 2.5, which expresses a good quantitative predictive ability for quality control purposes. Thus, RPD statistics confirm that an SCiO could be used as a quality control tool.

摘要

本研究旨在建立一种使用低成本手持式光谱仪(SCiO)获取的近红外光谱的化学计量学方法,以定量测定海洋松(Pinus pinaster)树脂的主要化学成分,以期将 SCiO 用作割脂行业的质量控制工具。本研究于 2018 年夏季在法国比斯开湾的样本上进行。使用 SCiO 和台式光谱仪(多功能分析仪 I)进行基线参考来采集光谱数据。通过气相色谱(松节油成分)、液相色谱(松香成分)和通风烘箱来定量测定松节油和松香的含量。化学计量学方法涉及光谱预处理和使用 DUPLEX 算法进行相关子集选择。最后,使用偏最小二乘(PLS)回归来校准模型。通过性能标准误差与标准偏差的比率(RPD)统计数据来评估所得 PLS 回归模型的定量预测能力。结果表明,光谱预处理提高了定量预测能力。对于 MPA I,RPD>3.5,表示模型具有非常好到优秀的定量预测能力。对于 SCiO,RPD>2.5,表示具有良好的定量预测能力,可用于质量控制目的。因此,RPD 统计数据证实 SCiO 可作为质量控制工具使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验