Suppr超能文献

用于锂金属电池应用的功能性隔膜综述。

A Review of Functional Separators for Lithium Metal Battery Applications.

作者信息

Jang Jooyoung, Oh Jiwoong, Jeong Hyebin, Kang Woosuk, Jo Changshin

机构信息

School of Chemical Engineering & Materials Science, Chung-Ang University (CAU), 84, Heukseok-ro, Dongjakgu, Seoul 06974, Korea.

出版信息

Materials (Basel). 2020 Oct 16;13(20):4625. doi: 10.3390/ma13204625.

Abstract

Lithium metal batteries are considered "rough diamonds" in electrochemical energy storage systems. Li-metal anodes have the versatile advantages of high theoretical capacity, low density, and low reaction potential, making them feasible candidates for next-generation battery applications. However, unsolved problems, such as dendritic growths, high reactivity of Li-metal, low Coulombic efficiency, and safety hazards, still exist and hamper the improvement of cell performance and reliability. The use of functional separators is one of the technologies that can contribute to solving these problems. Recently, functional separators have been actively studied and developed. In this paper, we summarize trends in the research on separators and predict future prospects.

摘要

锂金属电池在电化学储能系统中被视为“璞玉”。锂金属负极具有理论容量高、密度低和反应电位低等多种优势,使其成为下一代电池应用的可行候选者。然而,诸如枝晶生长、锂金属的高反应活性、低库仑效率和安全隐患等未解决的问题仍然存在,并阻碍了电池性能和可靠性的提升。使用功能隔膜是有助于解决这些问题的技术之一。近年来,功能隔膜得到了积极的研究和开发。在本文中,我们总结了隔膜的研究趋势并预测了未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cce/7603034/55463ec46b0f/materials-13-04625-g001.jpg

相似文献

1
A Review of Functional Separators for Lithium Metal Battery Applications.
Materials (Basel). 2020 Oct 16;13(20):4625. doi: 10.3390/ma13204625.
2
Surface-Functionalized Separator for Stable and Reliable Lithium Metal Batteries: A Review.
Nanomaterials (Basel). 2021 Sep 1;11(9):2275. doi: 10.3390/nano11092275.
4
Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
ChemSusChem. 2016 Nov 9;9(21):3023-3039. doi: 10.1002/cssc.201600943. Epub 2016 Sep 26.
5
Polyoxometalates/Active Carbon Thin Separator for Improving Cycle Performance of Lithium-Sulfur Batteries.
ACS Appl Mater Interfaces. 2018 Oct 24;10(42):35911-35918. doi: 10.1021/acsami.8b11227. Epub 2018 Oct 11.
6
Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.
Adv Mater. 2017 Sep;29(36). doi: 10.1002/adma.201701169. Epub 2017 Jul 24.
8
Battery separators.
Chem Rev. 2004 Oct;104(10):4419-62. doi: 10.1021/cr020738u.
9
Functional Separators for Long-Life and Safe Li Metal Batteries: A Minireview.
Polymers (Basel). 2022 Oct 26;14(21):4546. doi: 10.3390/polym14214546.
10
A Thermally Conductive Separator for Stable Li Metal Anodes.
Nano Lett. 2015 Sep 9;15(9):6149-54. doi: 10.1021/acs.nanolett.5b02432. Epub 2015 Aug 10.

引用本文的文献

1
Advancements in Glass Fiber Separator Technology for Lithium-Sulfur Batteries: The Role of Transport, Material Properties, and Modifications.
ACS Omega. 2025 Jan 21;10(4):3228-3261. doi: 10.1021/acsomega.4c07070. eCollection 2025 Feb 4.
2
Facile In Situ Building of Sulfonated SiO Coating on Porous Skeletons of Lithium-Ion Battery Separators.
Polymers (Basel). 2024 Sep 20;16(18):2659. doi: 10.3390/polym16182659.
4
A Light-Thin Chitosan Nanofiber Separator for High-Performance Lithium-Ion Batteries.
Polymers (Basel). 2023 Sep 5;15(18):3654. doi: 10.3390/polym15183654.
5
Characterization of teff straw from selected teff varieties from Ethiopia.
Heliyon. 2023 Jun 17;9(6):e17422. doi: 10.1016/j.heliyon.2023.e17422. eCollection 2023 Jun.
7
Photo-crosslinked lignin/PAN electrospun separator for safe lithium-ion batteries.
Sci Rep. 2022 Oct 31;12(1):18272. doi: 10.1038/s41598-022-23038-7.
8
Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors.
Polymers (Basel). 2022 Aug 19;14(16):3399. doi: 10.3390/polym14163399.

本文引用的文献

1
Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh areal loading.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21155-21161. doi: 10.1073/pnas.2007250117. Epub 2020 Aug 19.
2
Mesoporous carbon host material for stable lithium metal anode.
Nanoscale. 2020 Jun 11;12(22):11818-11824. doi: 10.1039/d0nr02258f.
3
High Modulus, Thermally Stable, and Self-Extinguishing Aramid Nanofiber Separators.
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):25756-25766. doi: 10.1021/acsami.0c03671. Epub 2020 Jun 1.
4
Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries.
Nat Mater. 2020 Jul;19(7):758-766. doi: 10.1038/s41563-020-0655-2. Epub 2020 Apr 27.
5
Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.
Chem Rev. 2020 May 27;120(10):4257-4300. doi: 10.1021/acs.chemrev.9b00427. Epub 2020 Apr 9.
6
Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li-S batteries.
Nanoscale Horiz. 2019 Jan 1;4(1):214-222. doi: 10.1039/c8nh00172c. Epub 2018 Sep 25.
7
Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review.
Adv Mater. 2020 May;32(18):e1904205. doi: 10.1002/adma.201904205. Epub 2020 Jan 20.
8
Suppressing the Shuttle Effect in Lithium-Sulfur Batteries by a UiO-66-Modified Polypropylene Separator.
ACS Omega. 2019 Jun 13;4(6):10328-10335. doi: 10.1021/acsomega.9b00884. eCollection 2019 Jun 30.
9
10
A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):18746-18757. doi: 10.1002/anie.201902413. Epub 2019 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验