Suppr超能文献

基于体细胞点突变和拷贝数变异数据的癌症预后预测:基因水平和通路水平模型的比较。

Cancer prognosis prediction using somatic point mutation and copy number variation data: a comparison of gene-level and pathway-based models.

机构信息

Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.

Department of Medicine, Institute for Clinical and Translational Research, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.

出版信息

BMC Bioinformatics. 2020 Oct 20;21(1):467. doi: 10.1186/s12859-020-03791-0.

Abstract

BACKGROUND

Genomic profiling of solid human tumors by projects such as The Cancer Genome Atlas (TCGA) has provided important information regarding the somatic alterations that drive cancer progression and patient survival. Although researchers have successfully leveraged TCGA data to build prognostic models, most efforts have focused on specific cancer types and a targeted set of gene-level predictors. Less is known about the prognostic ability of pathway-level variables in a pan-cancer setting. To address these limitations, we systematically evaluated and compared the prognostic ability of somatic point mutation (SPM) and copy number variation (CNV) data, gene-level and pathway-level models for a diverse set of TCGA cancer types and predictive modeling approaches.

RESULTS

We evaluated gene-level and pathway-level penalized Cox proportional hazards models using SPM and CNV data for 29 different TCGA cohorts. We measured predictive accuracy as the concordance index for predicting survival outcomes. Our comprehensive analysis suggests that the use of pathway-level predictors did not offer superior predictive power relative to gene-level models for all cancer types but had the advantages of robustness and parsimony. We identified a set of cohorts for which somatic alterations could not predict prognosis, and a unique cohort LGG, for which SPM data was more predictive than CNV data and the predictive accuracy is good for all model types. We found that the pathway-level predictors provide superior interpretative value and that there is often a serious collinearity issue for the gene-level models while pathway-level models avoided this issue.

CONCLUSION

Our comprehensive analysis suggests that when using somatic alterations data for cancer prognosis prediction, pathway-level models are more interpretable, stable and parsimonious compared to gene-level models. Pathway-level models also avoid the issue of collinearity, which can be serious for gene-level somatic alterations. The prognostic power of somatic alterations is highly variable across different cancer types and we have identified a set of cohorts for which somatic alterations could not predict prognosis. In general, CNV data predicts prognosis better than SPM data with the exception of the LGG cohort.

摘要

背景

通过癌症基因组图谱(TCGA)等项目对实体人类肿瘤进行基因组分析,为推动癌症进展和患者生存的体细胞改变提供了重要信息。尽管研究人员已经成功地利用 TCGA 数据构建了预后模型,但大多数努力都集中在特定的癌症类型和一组靶向基因水平预测因子上。在泛癌环境中,通路水平变量的预后能力知之甚少。为了解决这些局限性,我们系统地评估和比较了体细胞点突变(SPM)和拷贝数变异(CNV)数据、基因水平和通路水平模型在不同 TCGA 癌症类型和预测建模方法中的预后能力。

结果

我们使用 SPM 和 CNV 数据评估了 29 种不同 TCGA 队列的基因水平和通路水平惩罚 Cox 比例风险模型。我们使用一致性指数来衡量预测生存结果的预测准确性。我们的综合分析表明,对于所有癌症类型,通路水平预测因子的使用并不比基因水平模型提供更好的预测能力,但具有稳健性和简约性的优势。我们确定了一组无法预测预后的队列,以及一个独特的 LGG 队列,其中 SPM 数据比 CNV 数据更具预测性,并且所有模型类型的预测准确性都很好。我们发现,通路水平预测因子提供了更好的解释价值,而基因水平模型通常存在严重的共线性问题,而通路水平模型避免了这个问题。

结论

我们的综合分析表明,在使用体细胞改变数据进行癌症预后预测时,与基因水平模型相比,通路水平模型在解释性、稳定性和简约性方面更具优势。通路水平模型还避免了基因水平体细胞改变可能出现的共线性问题。体细胞改变的预后能力在不同的癌症类型中差异很大,我们已经确定了一组无法预测预后的队列。一般来说,除了 LGG 队列外,CNV 数据比 SPM 数据能更好地预测预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a48/7574407/c0549c5aa73f/12859_2020_3791_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验