Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50059 Zaragoza, Spain.
Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50059 Zaragoza, Spain; Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Sevilla, Spain.
Sci Total Environ. 2021 Apr 15;765:142752. doi: 10.1016/j.scitotenv.2020.142752. Epub 2020 Oct 5.
Understanding how climate warming and land-use changes determine the vulnerability of forests to drought is critical. However, we still lack: (i) robust quantifications of long-term growth changes during aridification processes, (ii) links between growth decline, changes in forest cover, stand structure and soil conditions, and (iii) forecasts of growth variability to projected climate warming. We investigated tree-ring records over the past 400-700 years, quantified changes in grazing area and forest cover during the 20th century, sampled current stand structure, and analyzed soil organic carbon δC and total nitrogen δN of Atlas cedar (Cedrus atlantica (Endl.) Manetti ex Carrière) Moroccan forests to characterize their dieback. Atlas cedar forests experienced massive dieback after the 1970s, particularly in the xeric High Atlas region. Forest cover increased in the less xeric regions (Middle Atlas and Rif) by almost 20%, while it decreased about 18% in the High Atlas, where soil δC and δN showed evidences of grazing. Growth declined and became more variable in response to recent droughts. The relative growth reduction (54%) was higher in the Middle Atlas than elsewhere (Rif, 32%; High Atlas, 36%). Growth synchrony between forests located within the Middle and High Atlas regions increased after the 1970s. Simulations based on a worst-case emission scenario and rapid warming forecast a stronger limitation of growth by low soil moisture in all regions, but particularly in the Middle Atlas and after the mid-21st century. Climate warming is expected to strengthen growth synchronization preceding dieback of conifer forests in xeric regions. The likelihood of similar dieback episodes is further exacerbated by historical degradation of these forests.
了解气候变暖与土地利用变化如何决定森林对干旱的脆弱性至关重要。然而,我们仍缺乏:(i) 干旱化过程中树木长期生长变化的稳健量化;(ii) 生长衰退、森林覆盖变化、林分结构和土壤条件之间的联系;以及 (iii) 对预估气候变暖条件下树木生长变异性的预测。我们研究了过去 400-700 年的树木年轮记录,量化了 20 世纪期间放牧区和森林覆盖的变化,采样了当前林分结构,并分析了摩洛哥 Atlas 雪松(Cedrus atlantica (Endl.) Manetti ex Carrière)的土壤有机碳 δC 和总氮 δN,以表征其衰退。Atlas 雪松林在 20 世纪 70 年代后经历了大规模衰退,特别是在干旱的 High Atlas 地区。较不干旱地区(Middle Atlas 和 Rif)的森林覆盖增加了近 20%,而在 High Atlas 地区则减少了约 18%,该地区的土壤 δC 和 δN 显示出放牧的证据。树木生长因近期干旱而衰退且变得更具变异性。与 Rif 地区(32%)和 High Atlas 地区(36%)相比,Middle Atlas 地区的相对生长减少率(54%)更高。20 世纪 70 年代后,位于 Middle Atlas 和 High Atlas 地区的森林之间的生长同步性增加。基于最坏情况下的排放情景和快速变暖的模拟预测,所有地区,尤其是 Middle Atlas 和 21 世纪中叶以后,低土壤水分将对生长产生更强的限制。气候变暖预计将加强干旱地区针叶林衰退前的生长同步性。这些森林历史退化的加剧,进一步增加了类似衰退事件发生的可能性。