Ma He, Sheng Nan, Govoni Marco, Galli Giulia
Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
Phys Chem Chem Phys. 2020 Nov 18;22(44):25522-25527. doi: 10.1039/d0cp04585c.
Using a recently developed quantum embedding theory, we present first-principles calculations of strongly correlated states of spin defects in diamond. Using this theory, effective Hamiltonians are constructed, which can be solved by classical and quantum computers; the latter promise a much more favorable scaling as a function of system size than the former. In particular, we report a study on the neutral group-IV vacancy complexes in diamond, and we discuss their strongly correlated spin-singlet and spin-triplet excited states. Our results provide valuable predictions for experiments aimed at optical manipulation of these defects for quantum information technology applications.
利用最近发展的量子嵌入理论,我们给出了金刚石中自旋缺陷强关联态的第一性原理计算。运用该理论构建了有效哈密顿量,其可通过经典计算机和量子计算机求解;与经典计算机相比,量子计算机有望随着系统规模的增大展现出更有利的计算量增长特性。特别地,我们报告了对金刚石中第IV族中性空位复合体的一项研究,并讨论了它们的强关联自旋单重态和自旋三重态激发态。我们的结果为旨在对这些缺陷进行光学操控以用于量子信息技术应用的实验提供了有价值的预测。