Suppr超能文献

间充质干细胞的封装:剖析间充质干细胞移植治疗的潜在机制

Encapsulation of Mesenchymal Stem Cells: Dissecting the Underlying Mechanism of Mesenchymal Stem Cell Transplantation Therapy.

作者信息

Kin Kyohei, Yasuhara Takao, Date Isao

机构信息

Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

出版信息

Neurosci Insights. 2020 Oct 6;15:2633105520959064. doi: 10.1177/2633105520959064. eCollection 2020.

Abstract

Mesenchymal stem cells (MSCs) are widely considered good candidates for cell transplantation therapy. Various central nervous system disorders have been suggested as suitable targets for MSC transplantation therapy. In this context, a great deal of basic and clinical research has been conducted to explore its clinical uses. Although depression is one of the most common diseases in the world, the response rate to the currently available treatment is insufficient and new treatments are much needed. Despite the fact that MSC transplantation therapy has the potential to elicit an antidepressant effect, few studies have been conducted on this topic to date and the underlying mechanism remains poorly understood. To address the development of a new treatment for depression, we evaluated the effect of MSCs using the encapsulation technique and Wistar-Kyoto rats. Encapsulation enables dissection of the complicated underlying mechanism of MSC transplantation therapy. Wistar-Kyoto rats that exhibit treatment-resistant depressive-like behaviors allow us to compare the effect of MSCs with that of conventional antidepressant treatment. In this commentary, we briefly summarize our recent published results and discuss future research prospects.

摘要

间充质干细胞(MSCs)被广泛认为是细胞移植治疗的良好候选者。各种中枢神经系统疾病已被建议作为间充质干细胞移植治疗的合适靶点。在这种背景下,已经进行了大量的基础和临床研究来探索其临床用途。尽管抑郁症是世界上最常见的疾病之一,但目前可用治疗的有效率不足,非常需要新的治疗方法。尽管间充质干细胞移植治疗有可能产生抗抑郁作用,但迄今为止关于这个主题的研究很少,其潜在机制仍知之甚少。为了开发一种新的抑郁症治疗方法,我们使用封装技术和Wistar-Kyoto大鼠评估了间充质干细胞的作用。封装能够剖析间充质干细胞移植治疗复杂的潜在机制。表现出抗治疗性抑郁样行为的Wistar-Kyoto大鼠使我们能够比较间充质干细胞与传统抗抑郁治疗的效果。在这篇评论中,我们简要总结了我们最近发表的结果并讨论了未来的研究前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7de/7543158/21fe99516a3e/10.1177_2633105520959064-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验