Suppr超能文献

NCMHap:一种基于 Neutrosophic c-均值聚类的新型单体型重建方法。

NCMHap: a novel method for haplotype reconstruction based on Neutrosophic c-means clustering.

机构信息

Department of Computer Engineering, University of Zanjan, Zanjan, Iran.

Department of Computer Engineering, Faculty of Engineering, University of Gonabad, Gonabad, Iran.

出版信息

BMC Bioinformatics. 2020 Oct 22;21(1):475. doi: 10.1186/s12859-020-03775-0.

Abstract

BACKGROUND

Single individual haplotype problem refers to reconstructing haplotypes of an individual based on several input fragments sequenced from a specified chromosome. Solving this problem is an important task in computational biology and has many applications in the pharmaceutical industry, clinical decision-making, and genetic diseases. It is known that solving the problem is NP-hard. Although several methods have been proposed to solve the problem, it is found that most of them have low performances in dealing with noisy input fragments. Therefore, proposing a method which is accurate and scalable, is a challenging task.

RESULTS

In this paper, we introduced a method, named NCMHap, which utilizes the Neutrosophic c-means (NCM) clustering algorithm. The NCM algorithm can effectively detect the noise and outliers in the input data. In addition, it can reduce their effects in the clustering process. The proposed method has been evaluated by several benchmark datasets. Comparing with existing methods indicates when NCM is tuned by suitable parameters, the results are encouraging. In particular, when the amount of noise increases, it outperforms the comparing methods.

CONCLUSION

The proposed method is validated using simulated and real datasets. The achieved results recommend the application of NCMHap on the datasets which involve the fragments with a huge amount of gaps and noise.

摘要

背景

单个人类单体型问题是指基于从特定染色体上测序得到的几个输入片段来重建个体的单体型。解决这个问题是计算生物学中的一个重要任务,在制药工业、临床决策和遗传疾病中有许多应用。已知该问题是 NP 难的。尽管已经提出了几种方法来解决这个问题,但发现它们中的大多数在处理有噪声的输入片段时性能较低。因此,提出一种准确且可扩展的方法是一项具有挑战性的任务。

结果

在本文中,我们引入了一种名为 NCMHap 的方法,该方法利用了 Neutrosophic c-means (NCM) 聚类算法。NCM 算法可以有效地检测输入数据中的噪声和异常值。此外,它可以减少它们在聚类过程中的影响。所提出的方法已经在几个基准数据集上进行了评估。与现有方法的比较表明,当 NCM 调整到合适的参数时,结果是令人鼓舞的。特别是当噪声量增加时,它优于比较方法。

结论

使用模拟和真实数据集验证了所提出的方法。所得到的结果表明,NCMHap 可应用于涉及大量间隙和噪声的片段的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8b0/7579908/932cdb957025/12859_2020_3775_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验