Page Jacob, Dubief Yves, Kerswell Rich R
DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.
School of Engineering, University of Vermont, Burlington, Vermont 05405, USA.
Phys Rev Lett. 2020 Oct 9;125(15):154501. doi: 10.1103/PhysRevLett.125.154501.
Elasto-inertial turbulence (EIT) is a new, two-dimensional chaotic flow state observed in polymer solutions with possible connections to inertialess elastic turbulence and drag-reduced Newtonian turbulence. In this Letter, we argue that the origins of EIT are fundamentally different from Newtonian turbulence by finding a dynamical connection between EIT and an elasto-inertial linear instability recently found at high Weissenberg numbers [Garg et al., Phys. Rev. Lett. 121, 024502 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.024502]. This link is established by isolating the first known exact coherent structures in viscoelastic parallel flows-nonlinear elasto-inertial traveling waves (TWs)-borne at the linear instability and tracking them down to substantially lower Weissenberg numbers where EIT exists. These TWs have a distinctive "arrowhead" structure in the polymer stretch field and can be clearly recognized albeit transiently in EIT as well as being attractors for EIT dynamics if the Weissenberg number is sufficiently large. Our findings suggest that the dynamical systems picture in which Newtonian turbulence is built around the coexistence of many (unstable) simple invariant solutions populating phase space carries over to EIT, though these solutions rely on elasticity to exist.
弹性惯性湍流(EIT)是在聚合物溶液中观察到的一种新的二维混沌流动状态,可能与无惯性弹性湍流和减阻牛顿湍流有关。在本快报中,我们通过找到EIT与最近在高魏森贝格数下发现的弹性惯性线性不稳定性之间的动力学联系,认为EIT的起源与牛顿湍流有根本不同[加尔格等人,《物理评论快报》121, 024502 (2018)PRLTAO0031 - 900710.1103/PhysRevLett.121.024502]。这种联系是通过分离粘弹性平行流中第一个已知的精确相干结构——由线性不稳定性产生的非线性弹性惯性行波(TWs)——并将它们追踪到魏森贝格数低得多且存在EIT的区域而建立的。这些TWs在聚合物拉伸场中具有独特的“箭头”结构,并且在EIT中尽管是瞬态的但也能被清楚识别,并且如果魏森贝格数足够大,它们还是EIT动力学的吸引子。我们的研究结果表明,牛顿湍流围绕着填充相空间的许多(不稳定的)简单不变解共存而构建的动力学系统图景也适用于EIT,尽管这些解依赖弹性而存在。