Department of Chemistry, Georgia State University, Atlanta, GA, USA.
Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
Nat Commun. 2020 Oct 23;11(1):5379. doi: 10.1038/s41467-020-19165-2.
Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3'-5' exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states of E. coli replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.
复制 DNA 聚合酶的校对是确保 DNA 复制保真度的基本机制。在校对过程中,错误掺入的核苷酸通过 DNA 聚合酶全酶的 3' - 5' 外切核酸酶活性被切除。外切核酸酶位点远离聚合位点,这对有效引物链转移提出了严格的结构和动力学要求。然而,这种转移的分子机制尚不清楚。在这里,我们使用最近的冷冻电镜结构和生化分析进行分子模拟,以描绘连接大肠杆菌复制 DNA 聚合酶 Pol III 的聚合和外切核酸酶状态的最优自由能路径。我们确定了所有中间体的结构,其中过渡引物链由手指、拇指和外切核酸酶结构域中的保守 Pol III 残基稳定。我们在数十毫秒的时间尺度上证明了切换动力学,并揭示了完整的 Pol-to-exo 切换机制,该机制通过靶向突变实验得到了验证。