Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
Anat Rec (Hoboken). 2021 Jul;304(7):1400-1419. doi: 10.1002/ar.24548. Epub 2020 Nov 5.
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
细菌病原体通过颠覆其靶宿主细胞的结构和功能来引起疾病。一些食源性病原体,如李斯特菌(Listeria monocytogenes,L. monocytogenes)、福氏志贺菌(Shigella flexneri,S. flexneri)、鼠伤寒沙门氏菌血清型 Typhimurium(Salmonella enterica serovar Typhimurium,S. Typhimurium)和肠致病性大肠杆菌(Enteropathogenic Escherichia coli,EPEC),操纵宿主肌动蛋白细胞骨架,导致腹泻(和全身性)感染。在感染过程中,这些侵袭性和粘附性病原体劫持宿主细胞的肌动蛋白丝,并将其重新排列成离散的富含肌动蛋白的结构,促进细菌粘附(通过基脚)、入侵(通过膜皱褶和内吞泡)、细胞内运动(通过彗星/火箭尾巴)和/或细胞间传播(通过膜突起和内陷)。我们之前已经表明,李斯特菌产生的富含肌动蛋白的结构包含宿主肌动蛋白交联蛋白α-辅肌动蛋白-4。在这里,我们着手研究α-辅肌动蛋白-4 在李斯特菌感染周期的其他关键步骤中的作用,并描述其他模型肌动蛋白劫持细菌病原体(福氏志贺菌、鼠伤寒沙门氏菌和肠致病性大肠杆菌)感染期间α-辅肌动蛋白-4 的亚细胞分布。尽管 α-辅肌动蛋白-4 在李斯特菌最初入侵的部位不存在,但我们发现它是在邻近宿主细胞的二次感染过程中形成的膜内陷的新组成部分。重要的是,我们揭示α-辅肌动蛋白-4 还定位于福氏志贺菌(彗星/火箭尾巴和膜突起)、鼠伤寒沙门氏菌(膜皱褶)和肠致病性大肠杆菌(基脚)在细胞培养感染中产生的主要富含肌动蛋白的结构中。总之,这些发现表明α-辅肌动蛋白-4 是一种宿主因子,被各种肌动蛋白劫持细菌病原体利用。