Li Hui, Sun Jingjing, Yang Hefeng, Han Xue, Luo Xiangyou, Liao LiJun, Yang Bo, Zhu Tian, Huo Fangjun, Guo Weihua, Tian Weidong
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Bioact Mater. 2020 Oct 14;6(4):1051-1072. doi: 10.1016/j.bioactmat.2020.09.029. eCollection 2021 Apr.
Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation, fibrosis, and remodeling process. Adaptive macrophage subsets have been identified to modulate inflammation and orchestrate the repair of neighboring parenchymal tissues. This study fabricated PPARγ-primed CD68CD206 M2 phenotype (M2γ), and firstly verified their anti-inflammatory and tissue-regenerating roles in xenogeneic bioengineered organ regeneration. Our results showed that Th1-type CD3CD8 T cell response to xenogeneic-dentin matrix-based bioengineered root complex (xeno-complex) was significantly inhibited by M2γ macrophage . PPARγ activation also timely recruited CD68CD206 tissue macrophage polarization to xeno-complex . These subsets alleviated proinflammatory cytokines (TNF-α, IFN-γ) at the inflammation site and decreased CD3CD8 T lymphocytes in the periphery system. When translated to an orthotopic nonhuman primate model, PPARγ-primed M2 macrophages immunosuppressed IL-1β, IL-6, TNF-α, MMPs to enable xeno-complex to effectively escape immune-mediated rejection and initiate graft-host synergistic integrity. These collective activities promoted the differentiation of odontoblast-like and periodontal-like cells to guide pulp-dentin and cementum-PDLs-bone regeneration and rescued partially injured odontogenesis such as DSPP and periostin expression. Finally, the regenerated root showed structure-biomechanical and functional equivalency to the native tooth. The timely conversion of M1-to-M2 macrophage mainly orchestrated odontogenesis, fibrogenesis, and osteogenesis, which represents a potential modulator for intact parenchymal-stromal tissue regeneration of targeted organs.
异种细胞外基质成功的再生医学策略需要在炎症、纤维化和重塑过程之间实现协同平衡。已鉴定出适应性巨噬细胞亚群可调节炎症并协调邻近实质组织的修复。本研究制备了经PPARγ预处理的CD68CD206 M2表型(M2γ),并首次验证了它们在异种生物工程器官再生中的抗炎和组织再生作用。我们的结果表明,M2γ巨噬细胞显著抑制了Th1型CD3CD8 T细胞对基于异种牙本质基质的生物工程牙根复合体(异种复合体)的反应。PPARγ激活还及时将CD68CD206组织巨噬细胞极化募集到异种复合体。这些亚群减轻了炎症部位的促炎细胞因子(TNF-α、IFN-γ),并减少了外周系统中的CD3CD8 T淋巴细胞。当转化为原位非人灵长类动物模型时,经PPARγ预处理的M2巨噬细胞抑制IL-1β、IL-6、TNF-α、MMPs,使异种复合体能够有效逃避免疫介导的排斥反应,并启动移植物-宿主协同完整性。这些共同作用促进了成牙本质样细胞和牙周样细胞的分化,以引导牙髓-牙本质和牙骨质-PDLs-骨再生,并挽救了部分受损的牙发生,如DSPP和骨膜蛋白的表达。最后,再生牙根在结构力学和功能上与天然牙齿相当。M1向M2巨噬细胞的及时转变主要协调了牙发生、纤维生成和成骨,这代表了一种针对目标器官完整实质-基质组织再生的潜在调节因子。