Suppr超能文献

空气中激光诱导碳等离子体中2微秒后原子和分子物种的动力学

Atomic and Molecular Species Post-2 μs Dynamics in Laser-Induced Carbon Plasmas in Air.

作者信息

Yousfi Houssyen, Abdelli-Messaci Samira, Ouamerali Ourida, Dekhira Azeddine

机构信息

Laboratory of Theoretical Computational Chemistry and Photonics, Faculty of Chemistry, University of Science and Technology Houari Boumediene (USTHB), BP 32 El-alia, Bab Ezzouar, Algiers 16111, Algeria.

Center for Development of Advanced Technologies, Bab Hassen, Algiers, Algeria.

出版信息

Appl Spectrosc. 2021 Mar;75(3):287-298. doi: 10.1177/0003702820971602. Epub 2020 Nov 10.

Abstract

Laser-induced carbon plasma in air undergoes various physicochemical processes that affect the kinetic chemistry of species of the plasma plume. We report the time- and space-resolved characterization of carbon plasma produced by infrared nanosecond laser into air at atmospheric pressure. Investigating the laser fluence effect highlights dissociation for fluences >40 J cm, and recombination processes in the fluence range of 10-40 J cm. Emission intensities of C and CN molecules undergo an enhancement at specific spatiotemporal locations in the laser-induced plasma. At a value of 27 J/cm and 0.8 mm from the plasma ignition, molecular band formation is favored for the specific temperature and density values of 1.7 × 10 cm and 9502 K. The vibrational temperatures of molecules are determined using nonlinear spectral data fitting program. The shock front between laser-induced carbon plasma and air may lead to a significant shock wave that affects the occurrence of molecular CN and C formation. This can be explained by the distinct temperatures exhibited by CN and C molecules with laser fluence. The atomic carbon travels farther to react and form C, where the ionization-recombination process plays a significant role in its formation. Collisions of C with N neutrals and N molecules are the plausible origin of CN generation. Moreover, the density of CN in the plasma depends on C molecules.

摘要

空气中激光诱导产生的碳等离子体经历各种物理化学过程,这些过程会影响等离子体羽流中物质的动力学化学。我们报告了在大气压力下,红外纳秒激光在空气中产生的碳等离子体的时间和空间分辨特性。研究激光能量密度效应发现,能量密度>40 J/cm²时会发生解离,而在10 - 40 J/cm²的能量密度范围内会发生复合过程。在激光诱导等离子体中的特定时空位置,C和CN分子的发射强度会增强。在能量密度为27 J/cm²且距等离子体点火点0.8 mm处,对于1.7×10¹⁸ cm⁻³和9502 K的特定温度和密度值,分子带形成更为有利。使用非线性光谱数据拟合程序确定分子的振动温度。激光诱导的碳等离子体与空气之间的激波前沿可能会导致显著的激波,从而影响分子CN和C的形成过程。这可以通过CN和C分子随激光能量密度呈现出的不同温度来解释。原子碳传播得更远以发生反应并形成C,其中电离复合过程在其形成中起着重要作用。C与N中性粒子和N分子的碰撞是CN产生的可能来源。此外,等离子体中CN的密度取决于C分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验