Suppr超能文献

可穿戴环境开发 API 及其在移动医疗领域的应用。

An API for Wearable Environments Development and Its Application to mHealth Field .

机构信息

Department of Informatics, Systems and Communication, University of Milano-Bicocca, 20126 Milano, Italy.

出版信息

Sensors (Basel). 2020 Oct 22;20(21):5970. doi: 10.3390/s20215970.

Abstract

Wearable technologies are transforming research in traditional paradigms of software and knowledge engineering. Among them, expert systems have the opportunity to deal with knowledge bases dynamically varying according to real-time data collected by position sensors, movement sensors, etc. However, it is necessary to design and implement opportune architectural solutions to avoid expert systems are responsible for data acquisition and representation. These solutions should be able to collect and store data according to expert systems desiderata, building a homogeneous framework where data reliability and interoperability among data acquisition, data representation and data use levels are guaranteed. To this aim, the wearable environment notion has been introduced to treat all those information sources as components of a larger platform; a middleware has been designed and implemented, namely WEAR-IT, which allows considering each sensor as a source of information that can be dynamically tied to an expert system application running on a smartphone. As an application example, the mHealth domain is considered.

摘要

可穿戴技术正在改变传统软件和知识工程范式中的研究。其中,专家系统有机会根据位置传感器、运动传感器等实时采集的数据动态处理知识库。然而,有必要设计和实施适当的架构解决方案,以避免专家系统负责数据采集和表示。这些解决方案应该能够根据专家系统的要求收集和存储数据,构建一个同质的框架,其中保证数据采集、数据表示和数据使用级别的数据可靠性和互操作性。为此,引入了可穿戴环境的概念,将所有这些信息源视为一个更大平台的组件;设计并实现了一个中间件,即 WEAR-IT,它允许将每个传感器视为可以动态绑定到智能手机上运行的专家系统应用程序的信息源。作为一个应用实例,考虑了移动健康领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5371/7659971/e559efbe802e/sensors-20-05970-g001.jpg

相似文献

1
An API for Wearable Environments Development and Its Application to mHealth Field .
Sensors (Basel). 2020 Oct 22;20(21):5970. doi: 10.3390/s20215970.
2
Wearable sensors with possibilities for data exchange: Analyzing status and needs of different actors in mobile health monitoring systems.
Int J Med Inform. 2020 Jan;133:104017. doi: 10.1016/j.ijmedinf.2019.104017. Epub 2019 Oct 31.
3
[Evaluation of physical activity using smartphones and wearable devices in healthcare: Current situation and future perspectives].
Nihon Koshu Eisei Zasshi. 2021 Sep 7;68(9):585-596. doi: 10.11236/jph.20-143. Epub 2021 Jun 11.
7
Accuracy of Mobile Applications versus Wearable Devices in Long-Term Step Measurements.
Sensors (Basel). 2020 Nov 5;20(21):6293. doi: 10.3390/s20216293.
8
Mitigation of Data Packet Loss in Bluetooth Low Energy-Based Wearable Healthcare Ecosystem.
Biosensors (Basel). 2021 Sep 23;11(10):350. doi: 10.3390/bios11100350.
9
Mobile Health Technologies in Cardiopulmonary Disease.
Chest. 2020 Mar;157(3):654-664. doi: 10.1016/j.chest.2019.10.015. Epub 2019 Oct 31.
10
Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.
Healthc Inform Res. 2017 Jan;23(1):4-15. doi: 10.4258/hir.2017.23.1.4. Epub 2017 Jan 31.

本文引用的文献

1
Wearable devices as facilitators, not drivers, of health behavior change.
JAMA. 2015 Feb 3;313(5):459-60. doi: 10.1001/jama.2014.14781.
2
Smart wearable body sensors for patient self-assessment and monitoring.
Arch Public Health. 2014 Aug 22;72(1):28. doi: 10.1186/2049-3258-72-28. eCollection 2014.
3
Barriers to participation in physical activity and exercise among middle-aged and elderly individuals.
Singapore Med J. 2013 Oct;54(10):581-6. doi: 10.11622/smedj.2013203.
4
Physical activity: more of the same is not enough.
Lancet. 2012 Jul 21;380(9838):190-91. doi: 10.1016/S0140-6736(12)61027-7.
5
Monitoring kinematic changes with fatigue in running using body-worn sensors.
IEEE Trans Inf Technol Biomed. 2012 Sep;16(5):983-90. doi: 10.1109/TITB.2012.2201950. Epub 2012 Jun 1.
6
Interventions to increase physical activity among healthy adults: meta-analysis of outcomes.
Am J Public Health. 2011 Apr;101(4):751-8. doi: 10.2105/AJPH.2010.194381. Epub 2011 Feb 17.
7
Physical activity monitoring in obese people in the real life environment.
J Neuroeng Rehabil. 2009 Dec 30;6:47. doi: 10.1186/1743-0003-6-47.
8
Automatic recognition of postures and activities in stroke patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2200-3. doi: 10.1109/IEMBS.2009.5334908.
9
Cuffless blood pressure monitoring using hydrostatic pressure changes.
IEEE Trans Biomed Eng. 2008 Jun;55(6):1775-7. doi: 10.1109/tbme.2008.919142.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验