Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Dis Model Mech. 2020 Oct 26;13(10):dmm046110. doi: 10.1242/dmm.046110.
The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research.
神经退行性疾病的全球负担突显了创新策略的迫切需求,以确定新的药物靶点和疾病修饰因子。线虫作为实验对象,已经进行了多次变革性的发现,这些发现重新定义了我们对生物学的理解,已有约 60 年。最近,线虫的许多显著属性已被应用于神经退行性疾病,包括肌萎缩侧索硬化症、阿尔茨海默病、帕金森病和亨廷顿病。在神经元特异性启动子下,以单拷贝或多拷贝水平编码正常和疾病变异蛋白的转基因线虫限制了特定神经元亚型的表达。线虫的解剖透明性允许使用共表达的荧光蛋白来跟踪动物衰老过程中的神经退行性变进展。重要的是,一个完全定义的连接组有助于详细了解神经退行性变对生物体健康的影响,并提供了一个独特的能力,可以准确地将细胞死亡与行为功能障碍或表型变异联系起来。此外,化学处理以及正向和反向遗传筛选加速了修饰因子的鉴定,这些修饰因子可以改变神经退行性变。当这些化学遗传学分析结合使用时,可以建立关键的阈值状态,以增强或减轻细胞应激,从而剖析相关途径。此外,线虫可以快速揭示寿命或健康寿命是否会影响神经退行性过程。在这里,我们概述了在线虫中研究神经退行性变所采用的方法,并强调了许多研究,这些研究例证了它作为临床前中介的实用性,以加速和告知哺乳动物转化研究。