MetOffice Hadley Centre, Exeter, UK.
Global Systems Institute, University of Exeter, Exeter, UK.
Nature. 2021 Jan;589(7842):408-414. doi: 10.1038/s41586-020-2887-3. Epub 2020 Oct 26.
Precipitation and atmospheric circulation are the coupled processes through which tropical ocean surface temperatures drive global weather and climate. Local sea surface warming tends to increase precipitation, but this local control is difficult to disentangle from remote effects of conditions elsewhere. As an example of such a remote effect, El Niño Southern Oscillation (ENSO) events in the equatorial Pacific Ocean alter precipitation across the tropics. Atmospheric circulations associated with tropical precipitation are predominantly deep, extending up to the tropopause. Shallow atmospheric circulations affecting the lower troposphere also occur, but the importance of their interaction with precipitation is unclear. Uncertainty in precipitation observations and limited observations of shallow circulations further obstruct our understanding of the ocean's influence on weather and climate. Despite decades of research, persistent biases remain in many numerical model simulations, including excessively wide tropical rainbands, the 'double-intertropical convergence zone problem' and too-weak responses to ENSO. These biases demonstrate gaps in our understanding, reducing confidence in forecasts and projections. Here we use observations to show that seasonal tropical precipitation has a high sensitivity to local sea surface temperature. Our best observational estimate is an 80 per cent change in precipitation for every gram per kilogram change in the saturation specific humidity (itself a function of the sea surface temperature). This observed sensitivity is higher than in 43 of the 47 climate models studied, and is associated with strong shallow circulations. Models with more realistic (closer to 80%) sensitivity have smaller biases across a wide range of metrics. Our results apply to both temporal and spatial variation, over regions where climatological precipitation is about one millimetre per day or more. Our analyses of multiple independent observations, physical constraints and model data underpin these findings. The spread in model behaviour is further linked to differences in shallow convection, thus providing a focus for accelerated research to improve seasonal forecasts through multidecadal climate projections.
降水和大气环流是相互耦合的过程,通过这一过程,热带海洋表面温度驱动着全球天气和气候。局部海面变暖往往会增加降水,但这种局部控制很难与其他地方的远程效应区分开来。厄尔尼诺-南方涛动(ENSO)等远程效应的一个例子是,赤道太平洋的厄尔尼诺-南方涛动事件改变了热带地区的降水。与热带降水相关的大气环流主要是深对流,延伸到对流层顶。也会出现影响低层大气的浅层大气环流,但它们与降水的相互作用的重要性尚不清楚。降水观测的不确定性和浅层环流观测的有限性进一步阻碍了我们对海洋对天气和气候影响的理解。尽管经过几十年的研究,许多数值模型模拟仍然存在持续的偏差,包括热带雨带过宽、“双热带辐合带问题”以及对 ENSO 的响应过弱。这些偏差表明我们的理解存在差距,降低了对预报和预测的信心。在这里,我们利用观测结果表明,季节性热带降水对当地海面温度高度敏感。我们最好的观测估计是,在每克每千克的饱和比湿度(本身是海面温度的函数)变化时,降水会有 80%的变化。这种观测到的敏感性高于 47 个被研究的气候模型中的 43 个,并且与强烈的浅层环流有关。敏感性更接近 80%的模型具有更小的偏差,在广泛的指标范围内都是如此。我们的结果适用于时间和空间变化,包括气候降水约为每天一毫米或更多的地区。我们对多个独立观测、物理约束和模型数据的分析支持了这些发现。模型行为的差异进一步与浅层对流的差异有关,从而为通过多年气候预测来改善季节性预测的加速研究提供了重点。