Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universdad de Extremadura, Badajoz, Spain.
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingerierias Industriales, Universidad de Extremadura, Badajoz, Spain.
J Cardiovasc Pharmacol. 2021 Mar 1;77(3):280-290. doi: 10.1097/FJC.0000000000000937.
Because cardiotoxicity is one of the leading causes of drug failure and attrition, the design of new protocols and technologies to assess proarrhythmic risks on cardiac cells is in continuous development by different laboratories. Current methodologies use electrical, intracellular Ca2+, or contractility assays to evaluate cardiotoxicity. Increasingly, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are the in vitro tissue model used in commercial assays because it is believed to recapitulate many aspects of human cardiac physiology. In this work, we demonstrate that the combination of a contractility and voltage measurements, using video-based imaging and fluorescence microscopy, on hiPSC-CMs allows the investigation of mechanistic links between electrical and mechanical effects in an assay design that can address medium throughput scales necessary for drug screening, offering a view of the mechanisms underlying drug toxicity. To assess the accuracy of this novel technique, 10 commercially available inotropic drugs were tested (5 positive and 5 negative). Included were drugs with simple and specific mechanisms, such as nifedipine, Bay K8644, and blebbistatin, and others with a more complex action such as isoproterenol, pimobendan, digoxin, and amrinone, among others. In addition, the results provide a mechanism for the toxicity of itraconazole in a human model, a drug with reported side effects on the heart. The data demonstrate a strong negative inotropic effect because of the blockade of L-type Ca2+ channels and additional action on the cardiac myofilaments. We can conclude that the combination of contractility and action potential measurements can provide wider mechanistic knowledge of drug cardiotoxicity for preclinical assays.
由于心脏毒性是导致药物失败和淘汰的主要原因之一,不同实验室一直在设计新的方案和技术来评估心脏细胞的致心律失常风险。目前的方法学使用电、细胞内 Ca2+或收缩性测定来评估心脏毒性。越来越多的人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)被用作商业测定中的体外组织模型,因为它被认为可以再现许多人类心脏生理学的方面。在这项工作中,我们证明了使用基于视频的成像和荧光显微镜对 hiPSC-CMs 进行收缩性和电压测量的组合,可以在一种测定设计中研究电和机械效应之间的机制联系,这种设计可以解决药物筛选所需的中等通量规模,提供对药物毒性的机制的了解。为了评估这项新技术的准确性,我们测试了 10 种市售的变力药物(5 种阳性和 5 种阴性)。包括具有简单和特定机制的药物,如硝苯地平、Bay K8644 和 blebbistatin,以及其他具有更复杂作用的药物,如异丙肾上腺素、pimobendan、地高辛和氨力农等。此外,这些结果为伊曲康唑在人类模型中的毒性提供了一种机制,伊曲康唑是一种报告有心脏副作用的药物。数据显示了一种强烈的负性肌力作用,这是由于 L 型钙通道的阻断和对心肌纤维的附加作用。我们可以得出结论,收缩性和动作电位测量的组合可以为临床前测定提供更广泛的药物心脏毒性的机制知识。