Suppr超能文献

直接甲酸盐燃料电池膜中的离子传输特性

Ion Transport Characteristics in Membranes for Direct Formate Fuel Cells.

作者信息

Su Xiangyu, Pan Zhefei, An Liang

机构信息

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Front Chem. 2020 Aug 31;8:765. doi: 10.3389/fchem.2020.00765. eCollection 2020.

Abstract

Ion exchange membranes are widely used in fuel cells to physically separate two electrodes and functionally conduct charge-carrier ions, such as anion exchange membranes and cation exchange membranes. The physiochemical characteristics of ion exchange membranes can affect the ion transport processes through the membrane and thus the fuel cell performance. This work aims to understand the ion transport characteristics through different types of ion exchange membrane in direct formate fuel cells. A one-dimensional model is developed and applied to predict the polarization curves, concentration distributions of reactants/products, distributions of three potentials (electric potential, electrolyte potential, and electrode potential) and the local current density in direct formate fuel cells. The effects of the membrane type and membrane thickness on the ion transport process and thus fuel cell performance are numerically investigated. In addition, particular attention is paid to the effect of the anion-cation conducting ratio of the membrane, i.e., the ratio of the anionic current to the cationic current through the membrane, on the fuel cell performance. The modeling results show that, when using an anion exchange membrane, both formate and hydroxide concentrations in the anode catalyst layer are higher than those achieved by using a cation exchange membrane. Although a thicker membrane better alleviates the fuel crossover phenomenon, increasing the membrane thickness will increase the ohmic loss, due to the enlarged ion-transport distance through the membrane. It is further found that increasing the anion-cation conducting ratio will upgrade the fuel cell performance via three mechanisms: (i) providing a higher ionic conductivity and thus reducing the ohmic loss; (ii) enabling more OH ions to transport from the cathode to the anode and thus increasing the OH concentration in the anode catalyst layer; and (iii) accumulating more cations in the anode and thus enhancing the formate-ion migration to the anode catalyst layer for the anodic reaction.

摘要

离子交换膜广泛应用于燃料电池中,用于物理分离两个电极并在功能上传导电荷载流子离子,如阴离子交换膜和阳离子交换膜。离子交换膜的物理化学特性会影响离子通过膜的传输过程,进而影响燃料电池的性能。这项工作旨在了解直接甲酸燃料电池中不同类型离子交换膜的离子传输特性。建立了一个一维模型,并将其应用于预测直接甲酸燃料电池的极化曲线、反应物/产物的浓度分布、三种电位(电势、电解质电位和电极电位)的分布以及局部电流密度。数值研究了膜类型和膜厚度对离子传输过程以及燃料电池性能的影响。此外,特别关注膜的阴离子-阳离子传导率,即通过膜的阴离子电流与阳离子电流的比值,对燃料电池性能的影响。建模结果表明,使用阴离子交换膜时,阳极催化剂层中的甲酸根和氢氧根浓度均高于使用阳离子交换膜时的浓度。尽管较厚的膜能更好地缓解燃料渗透现象,但由于离子通过膜的传输距离增大,增加膜厚度会增加欧姆损耗。进一步发现,提高阴离子-阳离子传导率将通过三种机制提升燃料电池性能:(i)提供更高的离子电导率,从而降低欧姆损耗;(ii)使更多的氢氧根离子从阴极传输到阳极,从而增加阳极催化剂层中的氢氧根浓度;(iii)在阳极积累更多的阳离子,从而增强甲酸根离子向阳极催化剂层的迁移以进行阳极反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6096/7489145/c18f6ec626d7/fchem-08-00765-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验