Laboratory for Pharmaceutical Technology & Biopharmacy, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
Laboratory for Microbiology, Parasitology & Hygiene, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
Nanomedicine (Lond). 2020 Nov;15(27):2671-2688. doi: 10.2217/nnm-2020-0317. Epub 2020 Oct 28.
This research aims to identify important formulation parameters for the enhancement of nanoparticle (NP) uptake and decreasing the cytotoxicity in macrophages. Fluorescent poly(lactic-co-glycolic acid) (PLGA) nanocarriers were characterized for size distributions, zeta potential and encapsulation efficiency. Incubation time, size class, PLGA derivative and chitosan derivative were assessed for uptake kinetics and cell viability. The major determining factor for enhancing cellular uptake were chitosan coatings, combined with acid-terminated PLGA and small NP size. Moreover, cytotoxicity was more favorable for small, chitosan glutamate-coated, acid-terminated PLGA NPs compared with its plain chitosan-coated counterparts. Chitosan glutamate has been shown to be a valuable alternative coating material for acid-terminated PLGA NPs to efficiently and safely target macrophages.
本研究旨在确定重要的制剂参数,以提高纳米粒子(NP)摄取率并降低巨噬细胞的细胞毒性。荧光聚(乳酸-共-乙醇酸)(PLGA)纳米载体的粒径分布、Zeta 电位和包封效率进行了表征。考察了孵育时间、粒径大小、PLGA 衍生物和壳聚糖衍生物对摄取动力学和细胞活力的影响。增强细胞摄取的主要决定因素是壳聚糖涂层,与酸封端的 PLGA 相结合,以及 NP 粒径较小。此外,与普通壳聚糖涂层相比,小粒径、壳聚糖谷氨酸涂层、酸封端的 PLGA NPs 的细胞毒性更有利。壳聚糖谷氨酸已被证明是酸封端 PLGA NPs 的一种有价值的替代涂层材料,可有效且安全地靶向巨噬细胞。
Front Pharmacol. 2022-4-28
Front Cell Dev Biol. 2022-2-3