Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan.
Course of Agrochemical Bioscience, Faculty of Agriculture, Okayama University, Okayama, Japan.
PLoS Genet. 2020 Oct 28;16(10):e1009091. doi: 10.1371/journal.pgen.1009091. eCollection 2020 Oct.
Proper control of gene expression levels upon various perturbations is a fundamental aspect of cellular robustness. Protein-level dosage compensation is one mechanism buffering perturbations to stoichiometry of multiprotein complexes through accelerated proteolysis of unassembled subunits. Although N-terminal acetylation- and ubiquitin-mediated proteasomal degradation by the Ac/N-end rule pathway enables selective compensation of excess subunits, it is unclear how widespread this pathway contributes to stoichiometry control. Here we report that dosage compensation depends only partially on the Ac/N-end rule pathway. Our analysis of genetic interactions between 18 subunits and 12 quality control factors in budding yeast demonstrated that multiple E3 ubiquitin ligases and N-acetyltransferases are involved in dosage compensation. We find that N-acetyltransferases-mediated compensation is not simply predictable from N-terminal sequence despite their sequence specificity for N-acetylation. We also find that the compensation of Pop3 and Bet4 is due in large part to a minor N-acetyltransferase NatD. Furthermore, canonical NatD substrates histone H2A/H4 were compensated even in its absence, suggesting N-acetylation-independent stoichiometry control. Our study reveals the complexity and robustness of the stoichiometry control system.
在各种扰动下,适当控制基因表达水平是细胞稳健性的一个基本方面。通过加速未组装亚基的蛋白酶体降解,蛋白质水平的剂量补偿是缓冲多蛋白复合物化学计量变化的一种机制。尽管 Ac/N-末端规则途径介导的 N 端乙酰化和泛素化蛋白酶体降解能够选择性地补偿多余的亚基,但尚不清楚这种途径对化学计量控制的广泛贡献程度。在这里,我们报告说剂量补偿仅部分依赖于 Ac/N-末端规则途径。我们对芽殖酵母 18 个亚基和 12 个质量控制因子之间的遗传相互作用进行了分析,结果表明,多种 E3 泛素连接酶和 N-乙酰转移酶参与了剂量补偿。我们发现,尽管 N-乙酰转移酶对 N-乙酰化具有序列特异性,但 N-乙酰化介导的补偿并不能简单地从 N 端序列预测。我们还发现,Pop3 和 Bet4 的补偿在很大程度上归因于次要的 N-乙酰转移酶 NatD。此外,即使在其缺失的情况下,组蛋白 H2A/H4 的经典 NatD 底物也得到了补偿,这表明存在不依赖于 N-乙酰化的化学计量控制。我们的研究揭示了化学计量控制系统的复杂性和稳健性。