人类上丘中空间特异性工作记忆活动

Spatially Specific Working Memory Activity in the Human Superior Colliculus.

作者信息

Rahmati Masih, DeSimone Kevin, Curtis Clayton E, Sreenivasan Kartik K

机构信息

Department of Psychology, New York University, New York, New York 10003.

Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE.

出版信息

J Neurosci. 2020 Dec 2;40(49):9487-9495. doi: 10.1523/JNEUROSCI.2016-20.2020. Epub 2020 Oct 28.

Abstract

Theoretically, working memory (WM) representations are encoded by population activity of neurons with distributed tuning across the stored feature. Here, we leverage computational neuroimaging approaches to map the topographic organization of human superior colliculus (SC) and model how population activity in SC encodes WM representations. We first modeled receptive field properties of voxels in SC, deriving a detailed topographic organization resembling that of the primate SC. Neural activity within human (5 male and 1 female) SC persisted throughout a retention interval of several types of modified memory-guided saccade tasks. Assuming an underlying neural architecture of the SC based on its retinotopic organization, we used an encoding model to show that the pattern of activity in human SC represents locations stored in WM. Our tasks and models allowed us to dissociate the locations of visual targets and the motor metrics of memory-guided saccades from the spatial locations stored in WM, thus confirming that human SC represents true WM information. These data have several important implications. They add the SC to a growing number of cortical and subcortical brain areas that form distributed networks supporting WM functions. Moreover, they specify a clear neural mechanism by which topographically organized SC encodes WM representations. Using computational neuroimaging approaches, we mapped the topographic organization of human superior colliculus (SC) and modeled how population activity in SC encodes working memory (WM) representations, rather than simpler visual or motor properties that have been traditionally associated with the laminar maps in the primate SC. Together, these data both position the human SC into a distributed network of brain areas supporting WM and elucidate the neural mechanisms by which the SC supports WM.

摘要

理论上,工作记忆(WM)表征是由神经元的群体活动编码的,这些神经元在存储的特征上具有分布式调谐。在这里,我们利用计算神经成像方法来绘制人类上丘(SC)的地形组织,并建立模型来研究SC中的群体活动如何编码WM表征。我们首先对SC中体素的感受野特性进行建模,得出了一个类似于灵长类动物SC的详细地形组织。在几种类型的改良记忆引导扫视任务的保持间隔期间,人类(5名男性和1名女性)SC内的神经活动持续存在。基于SC的视网膜拓扑组织假设其潜在的神经结构,我们使用编码模型表明人类SC中的活动模式代表了存储在WM中的位置。我们的任务和模型使我们能够将视觉目标的位置和记忆引导扫视的运动指标与存储在WM中的空间位置区分开来,从而证实人类SC代表了真实的WM信息。这些数据有几个重要意义。它们将SC添加到越来越多形成支持WM功能的分布式网络的皮质和皮质下脑区中。此外,它们明确了一种清晰的神经机制,通过这种机制,地形组织的SC编码WM表征。使用计算神经成像方法,我们绘制了人类上丘(SC)的地形组织,并建立模型来研究SC中的群体活动如何编码工作记忆(WM)表征,而不是传统上与灵长类动物SC中的层状图谱相关的更简单的视觉或运动特性。总之,这些数据既将人类SC定位到支持WM的脑区分布式网络中,又阐明了SC支持WM的神经机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a3e/7724141/f60bdce83b31/SN-JNSJ200619F001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索