Finlay Christopher C, Kloss Clemens, Olsen Nils, Hammer Magnus D, Tøffner-Clausen Lars, Grayver Alexander, Kuvshinov Alexey
Division of Geomagnetism, DTU Space, Technical University of Denmark, Centrifugevej 356, Kongens Lyngby, Denmark.
Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, Zurich, Switzerland.
Earth Planets Space. 2020;72(1):156. doi: 10.1186/s40623-020-01252-9. Epub 2020 Oct 20.
We present the CHAOS-7 model of the time-dependent near-Earth geomagnetic field between 1999 and 2020 based on magnetic field observations collected by the low-Earth orbit satellites , CryoSat-2, CHAMP, SAC-C and Ørsted, and on annual differences of monthly means of ground observatory measurements. The CHAOS-7 model consists of a time-dependent internal field up to spherical harmonic degree 20, a static internal field which merges to the LCS-1 lithospheric field model above degree 25, a model of the magnetospheric field and its induced counterpart, estimates of Euler angles describing the alignment of satellite vector magnetometers, and magnetometer calibration parameters for CryoSat-2. Only data from dark regions satisfying strict geomagnetic quiet-time criteria (including conditions on IMF and at all latitudes) were used in the field estimation. Model parameters were estimated using an iteratively reweighted regularized least-squares procedure; regularization of the time-dependent internal field was relaxed at high spherical harmonic degree compared with previous versions of the CHAOS model. We use CHAOS-7 to investigate recent changes in the geomagnetic field, studying the evolution of the South Atlantic weak field anomaly and rapid field changes in the Pacific region since 2014. At Earth's surface a secondary minimum of the South Atlantic Anomaly is now evident to the south west of Africa. Green's functions relating the core-mantle boundary radial field to the surface intensity show this feature is connected with the movement and evolution of a reversed flux feature under South Africa. The continuing growth in size and weakening of the main anomaly is linked to the westward motion and gathering of reversed flux under South America. In the Pacific region at Earth's surface between 2015 and 2018 a sign change has occurred in the second time derivative (acceleration) of the radial component of the field. This acceleration change took the form of a localized, east-west oriented, dipole. It was clearly recorded on ground, for example at the magnetic observatory at Honolulu, and was seen in observations over an extended region in the central and western Pacific. Downward continuing to the core-mantle boundary, we find this event originated in field acceleration changes at low latitudes beneath the central and western Pacific in 2017.
我们基于低地球轨道卫星CryoSat-2、CHAMP、SAC-C和Ørsted收集的磁场观测数据以及地面观测站月均值的年度差异,给出了1999年至2020年随时间变化的近地地磁场CHAOS-7模型。CHAOS-7模型由一个随时间变化的内部场(高达球谐次数20)、一个与25次以上的LCS-1岩石圈场模型合并的静态内部场、一个磁层场及其感应对应场的模型、描述卫星矢量磁力仪对准的欧拉角估计值以及CryoSat-2的磁力仪校准参数组成。仅使用了来自满足严格地磁静时标准(包括所有纬度上的IMF和 条件)的暗区数据进行场估计。模型参数使用迭代加权正则化最小二乘法进行估计;与CHAOS模型的先前版本相比,随时间变化的内部场在高球谐次数下的正则化有所放宽。我们使用CHAOS-7来研究地磁场的近期变化,研究自2014年以来南大西洋弱场异常的演变以及太平洋地区的快速场变化。在地球表面,南大西洋异常的一个次极小值现在在非洲西南部很明显。将核幔边界径向场与表面强度联系起来的格林函数表明,这一特征与南非下方反向通量特征的移动和演变有关。主要异常的持续扩大和减弱与南美洲下方反向通量的向西移动和聚集有关。在2015年至2018年期间地球表面的太平洋地区,场径向分量的二阶导数(加速度)发生了符号变化。这种加速度变化表现为一个局部的、东西向的偶极子形式。它在地面上有清晰记录,例如在檀香山的地磁观测站,并且在中太平洋和西太平洋的广大区域的观测中也能看到。向下延伸到核幔边界,我们发现这一事件起源于2017年中太平洋和西太平洋下方低纬度地区的场加速度变化。