Narreddula Venkateswara R, McKinnon Benjamin I, Marlton Samuel J P, Marshall David L, Boase Nathan R B, Poad Berwyck L J, Trevitt Adam J, Mitchell Todd W, Blanksby Stephen J
School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Analyst. 2021 Jan 4;146(1):156-169. doi: 10.1039/d0an01840f.
Ultraviolet-photodissociation (UVPD) mass spectrometry is an emerging analytical tool for structural elucidation of biomolecules including lipids. Gas phase UVPD of ionised fatty acids (FAs) can promote fragmentation that is diagnostic for molecular structure including the regiochemistry of carbon-carbon double bonds and methyl branching position(s). Typically, however, lipids exhibit poor conversion to photoproducts under UVPD and thus require longer integration times to achieve the signal-to-noise required for structural assignments. Consequently, the integration of UVPD into liquid-chromatography mass spectrometry (LC-MS) workflows for FAs has been limited. To enhance photofragmentation efficiency, an alternative strategy has been devised using wet-chemical derivatization of FAs to explicitly incorporate photolabile groups. FA derivatives that include an aryl-iodide motif have photodissociation conversions of up to 28% when activated by a single 266 nm photon. The radical-directed dissociation product ions resulting from UVPD of these derivatives provide key details of molecular structure and discriminate between lipid isomers. Herein, we describe the structure-activity guided development of new FA derivatives capable of photoproduct yields of up to 97%. UVPD-action spectroscopy demonstrates that photodissociation for FAs derivatized with N-(2-aminoethyl)-4-iodobenzamide (NIBA) is maximised near 266 nm and highlights the key role of the 4-iodobenzamide motif in the efficient formation of [M - I]˙+ radical cations (and diagnostic secondary product ions). The high photodissociation yield of NIBA-derivatized lipids is maintained across 37 commonly observed FAs with the resulting UVPD mass spectra shown to be effective in the discrimination of isomeric FAs that differ in the position(s) of carbon-carbon double bonds. Integration of this strategy with reversed-phase LC-MS workflows is confirmed with high-quality UVPD mass spectra acquired across each chromatographic peak.
紫外光解离(UVPD)质谱法是一种新兴的用于阐明包括脂质在内的生物分子结构的分析工具。离子化脂肪酸(FAs)的气相UVPD可促进碎片化,这对于分子结构具有诊断意义,包括碳 - 碳双键的区域化学和甲基分支位置。然而,通常情况下,脂质在UVPD条件下转化为光产物的效率较低,因此需要更长的积分时间才能获得结构归属所需的信噪比。因此,将UVPD整合到用于FAs的液相色谱质谱(LC - MS)工作流程中受到了限制。为了提高光碎片化效率,人们设计了一种替代策略,即通过对FAs进行湿化学衍生化来明确引入光不稳定基团。包含芳基碘基序的FA衍生物在单个266 nm光子激发下具有高达28%的光解离转化率。这些衍生物的UVPD产生的自由基导向解离产物离子提供了分子结构的关键细节,并能区分脂质异构体。在此,我们描述了新的FA衍生物的结构 - 活性导向开发,其光产物产率高达97%。UVPD作用光谱表明,用N - (2 - 氨基乙基) - 4 - 碘苯甲酰胺(NIBA)衍生化的FAs的光解离在266 nm附近达到最大值,并突出了4 - 碘苯甲酰胺基序在有效形成[M - I]˙+自由基阳离子(以及诊断性二级产物离子)中的关键作用。NIBA衍生化脂质的高光解离产率在37种常见的FAs中均能保持,所得的UVPD质谱图显示可有效区分碳 - 碳双键位置不同的异构体FAs。通过在每个色谱峰上获得的高质量UVPD质谱图证实了该策略与反相LC - MS工作流程的整合。