Suppr超能文献

利用Ki67和P63组织病理学改善苏木精-伊红(H&E)组织微阵列中的前列腺癌分类

Improving prostate cancer classification in H&E tissue micro arrays using Ki67 and P63 histopathology.

作者信息

Shao Yanan, Nir Guy, Fazli Ladan, Goldenberg Larry, Gleave Martin, Black Peter, Wang Jane, Salcudean Septimiu

机构信息

Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

Ikomed Technologies Inc., Vancouver, BC, Canada.

出版信息

Comput Biol Med. 2020 Dec;127:104053. doi: 10.1016/j.compbiomed.2020.104053. Epub 2020 Oct 14.

Abstract

Histopathology of Hematoxylin and Eosin (H&E)-stained tissue obtained from biopsy is commonly used in prostate cancer (PCa) diagnosis. Automatic PCa classification of digitized H&E slides has been developed before, but no attempts have been made to classify PCa using additional tissue stains registered to H&E. In this paper, we demonstrate that using H&E, Ki67 and p63-stained (3-stain) tissue improves PCa classification relative to H&E alone. We also show that we can infer PCa-relevant Ki67 and p63 information from the H&E slides alone, and use it to achieve H&E-based PCa classification that is comparable to the 3-stain classification. Reported improvements apply to classifying benign vs. malignant tissue, and low grade (Gleason group 2) vs. high grade (Gleason groups 3,4,5) cancer. Specifically, we conducted four classification tasks using 333 tissue samples extracted from 231 radical prostatectomy patients: regression tree-based classification using either (i) 3-stain features, with a benign vs malignant area under the curve (AUC = 92.9%), or (ii) real H&E features and H&E features learned from Ki67 and p63 stains (AUC = 92.4%), as well as deep learning classification using either (iii) real 3-stain tissue patches (AUC = 94.3%) and (iv) real H&E patches and generated Ki67 and p63 patches (AUC = 93.0%) using a deep convolutional generative adversarial network. Classification performance was assessed with Monte Carlo cross validation and quantified in terms of the Area Under the Curve, Brier score, sensitivity, and specificity. Our results are interpretable and indicate that the standard H&E classification could be improved by mimicking other stain types.

摘要

从活检获得的苏木精和伊红(H&E)染色组织的组织病理学常用于前列腺癌(PCa)诊断。之前已经开发了数字化H&E玻片的自动PCa分类方法,但尚未尝试使用与H&E配准的其他组织染色来对PCa进行分类。在本文中,我们证明,相对于单独使用H&E,使用H&E、Ki67和p63染色(三染色)组织可改善PCa分类。我们还表明,我们可以仅从H&E玻片推断出与PCa相关的Ki67和p63信息,并将其用于实现与三染色分类相当的基于H&E的PCa分类。报告的改进适用于良性与恶性组织的分类,以及低级别(Gleason 2组)与高级别(Gleason 3、4、5组)癌症的分类。具体而言,我们使用从231例根治性前列腺切除术患者中提取的333个组织样本进行了四项分类任务:基于回归树的分类,使用(i)三染色特征,曲线下面积(AUC = 92.9%)用于区分良性与恶性,或(ii)真实H&E特征以及从Ki67和p63染色中学习到的H&E特征(AUC = 92.4%),以及深度学习分类,使用(iii)真实的三染色组织切片(AUC = 94.3%)和(iv)真实H&E切片以及使用深度卷积生成对抗网络生成的Ki67和p63切片(AUC = 93.0%)。通过蒙特卡洛交叉验证评估分类性能,并根据曲线下面积、布里尔评分、敏感性和特异性进行量化。我们的结果是可解释的,表明通过模仿其他染色类型可以改进标准H&E分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验