Suppr超能文献

根系对 GR24 的独立转录反应。

-independent transcriptional responses to GR24 in roots.

机构信息

Faculty of Biology, Biocenter Martinsried, LMU Munich , Martinsried, Germany.

TUM School of Life Science Weihenstephan, Technical University of Munich , Freising, Germany.

出版信息

Plant Signal Behav. 2021 Jan 2;16(1):1840852. doi: 10.1080/15592324.2020.1840852. Epub 2020 Oct 30.

Abstract

Strigolactones (SLs) and smoke-derived Karrikins (KARs) are structurally similar butenolide compounds that control distinct aspects of plant development. They are perceived by two closely related α/β hydrolases D14 and KAI2, respectively. Responses to both molecules involve the F-box protein MAX2 that participates in the Skp1-Cullin-F-box (SCF) complex, which ubiquitylates developmental regulators of the SMXL family to mark them for degradation by the 26S proteasome, enabling SL and KAR responses. Current research on SL and KAR signaling uses the synthetic molecules GR24, KAR and KAR for pharmacological treatments. In a previous microarray analysis, we observed transcriptional activation in response to GR24 in seedling roots. We retested transcript accumulation of selected genes by quantitative PCR in the wild type and the mutant, and found that surprisingly, a number of them respond to GR24 in a -independent manner, and also respond in roots of and double mutants. Thus, the synthetic compounds induce transcriptional responses independent of their perception by the canonical receptor complex.

摘要

独脚金内酯(SLs)和烟碱衍生的卡凯因(KARs)是结构相似的丁烯内酯化合物,它们分别控制着植物发育的不同方面。它们分别被两个密切相关的α/β水解酶 D14 和 KAI2 感知。对这两种分子的反应都涉及 F-box 蛋白 MAX2,它参与 Skp1-Cullin-F-box(SCF)复合物,该复合物泛素化 SMXL 家族的发育调节剂,使其标记为 26S 蛋白酶体降解,从而实现 SL 和 KAR 反应。目前对 SL 和 KAR 信号转导的研究使用合成分子 GR24、KAR 和 KAR 进行药理学处理。在之前的微阵列分析中,我们观察到 GR24 诱导幼苗根的转录激活。我们通过定量 PCR 在野生型和 突变体中重新测试了选定基因的转录积累,令人惊讶的是,其中许多基因以 - 非依赖性方式对 GR24 作出反应,并且在 和 双突变体的根中也作出反应。因此,这些合成化合物诱导的转录反应不依赖于它们被典型受体复合物的感知。

相似文献

1
-independent transcriptional responses to GR24 in roots.
Plant Signal Behav. 2021 Jan 2;16(1):1840852. doi: 10.1080/15592324.2020.1840852. Epub 2020 Oct 30.
2
Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
PLoS Genet. 2020 Dec 28;16(12):e1009249. doi: 10.1371/journal.pgen.1009249. eCollection 2020 Dec.
3
Functional redundancy in the control of seedling growth by the karrikin signaling pathway.
Planta. 2016 Jun;243(6):1397-406. doi: 10.1007/s00425-015-2458-2. Epub 2016 Jan 11.
5
The karrikin signaling regulator SMAX1 controls root and root hair development by suppressing ethylene biosynthesis.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21757-21765. doi: 10.1073/pnas.2006111117. Epub 2020 Aug 17.
9
SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis.
Plant Physiol. 2013 Sep;163(1):318-30. doi: 10.1104/pp.113.221259. Epub 2013 Jul 26.
10
SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis.
PLoS Genet. 2019 Aug 29;15(8):e1008327. doi: 10.1371/journal.pgen.1008327. eCollection 2019 Aug.

引用本文的文献

1
Novel mechanisms of strigolactone-induced DWARF14 degradation in Arabidopsis thaliana.
J Exp Bot. 2024 Dec 4;75(22):7145-7159. doi: 10.1093/jxb/erae365.
2
Does zaxinone counteract strigolactones in shaping rice architecture?
Plant Signal Behav. 2023 Dec 31;18(1):2184127. doi: 10.1080/15592324.2023.2184127.

本文引用的文献

1
Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy.
PLoS Genet. 2020 Dec 28;16(12):e1009249. doi: 10.1371/journal.pgen.1009249. eCollection 2020 Dec.
2
The karrikin signaling regulator SMAX1 controls root and root hair development by suppressing ethylene biosynthesis.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21757-21765. doi: 10.1073/pnas.2006111117. Epub 2020 Aug 17.
3
Contalactone, a contaminant formed during chemical synthesis of the strigolactone reference GR24 is also a strigolactone mimic.
Phytochemistry. 2019 Dec;168:112112. doi: 10.1016/j.phytochem.2019.112112. Epub 2019 Sep 6.
4
SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis.
PLoS Genet. 2019 Aug 29;15(8):e1008327. doi: 10.1371/journal.pgen.1008327. eCollection 2019 Aug.
5
Fellowship of the rings: a saga of strigolactones and other small signals.
New Phytol. 2020 Jan;225(2):621-636. doi: 10.1111/nph.16135. Epub 2019 Sep 17.
6
Stromules: Probing Formation and Function.
Plant Physiol. 2018 Jan;176(1):128-137. doi: 10.1104/pp.17.01287. Epub 2017 Nov 2.
7
Strigolactone Signaling and Evolution.
Annu Rev Plant Biol. 2017 Apr 28;68:291-322. doi: 10.1146/annurev-arplant-042916-040925. Epub 2017 Jan 11.
8
Reporter Gene-Facilitated Detection of Compounds in Leaf Extracts that Activate the Karrikin Signaling Pathway.
Front Plant Sci. 2016 Dec 2;7:1799. doi: 10.3389/fpls.2016.01799. eCollection 2016.
10
Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare.
Physiol Plant. 2016 Nov;158(3):341-355. doi: 10.1111/ppl.12460. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验