Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
Redox Biol. 2020 Oct;37:101748. doi: 10.1016/j.redox.2020.101748. Epub 2020 Oct 7.
Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetes-prone NZO mice.
营养过剩会导致胰岛素抵抗、肥胖和代谢应激,从而导致功能性β细胞丧失和糖尿病的发生。目前人们几乎没有研究过这些损伤效应是否会在老年时加剧。因此,我们用高脂肪、低碳水化合物限制饮食来喂养新西兰肥胖(NZO)小鼠,该饮食会对它们造成代谢挑战,之后再在它们年轻和老年时进行碳水化合物干预。有趣的是,尽管年轻的 NZO 小鼠对碳水化合物喂养有强烈的高血糖反应,导致β细胞功能障碍和细胞死亡,但老年 NZO 小鼠通过持续的β细胞功能和β细胞质量扩张来补偿增加的胰岛素需求。年轻 NZO 胰岛β细胞的丢失与硫氧还蛋白相互作用蛋白(TXNIP)的表达增加有关,这可能通过半胱天冬酶-3 的激活引发了细胞凋亡信号级联反应。相比之下,老年 NZO 的胰岛表现出持续的氧化还原平衡,TXNIP 的表达没有变化,与细胞周期激活相关的更高的增殖潜力有关。这些发现支持了在代谢应激下保持增殖潜力和氧化还原平衡对于维持胰岛功能的重要性,特别的是,这种适应性反应出现在易患糖尿病的 NZO 小鼠的老年时期。