Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
Bioresour Technol. 2021 Jan;320(Pt A):124294. doi: 10.1016/j.biortech.2020.124294. Epub 2020 Oct 22.
Transition metal compounds have been widely used to enhance the anaerobic digestion (AD) performance, while the role of transition metal compounds in enhancing AD performance remains unclarified. In this work, the function of transition metal oxide accelerants (tantalum oxide, niobium oxide, hafnium oxide, and tungsten oxide) in enhanced AD systems was investigated from experimental and theoretical standpoints. Higher biogas production (565.01-617.85 mL/g VS), chemical oxygen demand degradation rate (67.17%-70.45%), total solids and volatile solids reduction rates (29.76%-34.71%, 51.83%-60.88%) were achieved in AD systems with transition metal oxide accelerants than the control (327.08 mL/g VS, 56.65%, 22.65%, and 41.18%). The first-principle density functional theory calculations, electron exchange capacity analysis, and the 16S rRNA gene pyrosequencing demonstrated superior electron transfer and exchange capacities as well as microbial consortia development in transition metal oxides-induced DIET mechanism. This work provides a promising strategy for understanding the function of high-performance accelerants in AD systems.
过渡金属化合物已被广泛用于提高厌氧消化(AD)性能,但过渡金属化合物在提高 AD 性能方面的作用仍不清楚。本工作从实验和理论角度研究了过渡金属氧化物促进剂(氧化钽、氧化铌、氧化铪和氧化钨)在增强 AD 系统中的功能。与对照(327.08 毫升/克 VS、56.65%、22.65%和 41.18%)相比,AD 系统中添加过渡金属氧化物促进剂可实现更高的沼气产量(565.01-617.85 毫升/克 VS)、化学需氧量降解率(67.17%-70.45%)、总固体和挥发性固体减少率(29.76%-34.71%,51.83%-60.88%)。第一性原理密度泛函理论计算、电子交换容量分析和 16S rRNA 基因焦磷酸测序表明,过渡金属氧化物诱导的直接电子传递(DIET)机制中具有优异的电子传递和交换能力以及微生物群落的发展。这项工作为理解 AD 系统中高性能促进剂的功能提供了一种有前途的策略。