Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico.
Departamento de Farmacobiologia, CINVESTAV-IPN sede Sur, Mexico, D.F. 14330, Mexico.
Life Sci. 2021 Jan 1;264:118700. doi: 10.1016/j.lfs.2020.118700. Epub 2020 Oct 30.
Ventricular myocytes (VM) depolarization activates L-type Ca channels (LCC) allowing Ca influx (I) to synchronize sarcoplasmic reticulum (SR) Ca release, via Ca-release channels (RyR2). The resulting whole-cell Ca transient triggers contraction, while cytosolic Ca removal by SR Ca pump (SERCA2) and sarcolemmal Na/Ca exchanger (NCX) allows relaxation. In diseased hearts, extensive VM remodeling causes heterogeneous, blunted and slow Ca transients. Among remodeling changes are: A) T-tubules disorganization. B) Diminished SERCA2 and low SR Ca. However, those often overlap, hindering their relative contribution to contractile dysfunction (CD). Furthermore, few studies have assessed their specific impact on the spatiotemporal Ca transient properties and contractile dynamics simultaneously. Therefore, we sought to perform a quantitative comparison of how heterogeneous and slow Ca transients, with different underlying determinants, affect contractile performance.
We used two experimental models: A) formamide-induced acute "detubulation", where VM retain functional RyR2 and SERCA2, but lack T-tubules-associated LCC and NCX. B) Intact VM from hypothyroid rats, presenting decreased SERCA2 and SR Ca, but maintained T-tubules. By confocal imaging of Fluo-4-loaded VM, under field-stimulation, simultaneously acquired Ca transients and shortening, allowing direct correlations.
We found near-linear correlations among key parameters of altered Ca transients, caused independently by T-tubules disruption or decreased SR Ca, and shortening and relaxation, SIGNIFICANCE: Unrelated structural and molecular alterations converge in similarly abnormal Ca transients and CD, highlighting the importance of independently reproduce disease-specific alterations, to quantitatively assess their impact on Ca signaling and contractility, which would be valuable to determine potential disease-specific therapeutic targets.
心室肌细胞(VM)去极化激活 L 型钙通道(LCC),允许 Ca 内流(I)通过 Ca 释放通道(RyR2)同步肌浆网(SR)Ca 释放。由此产生的全细胞 Ca 瞬变触发收缩,而 SR Ca 泵(SERCA2)和肌浆膜 Na/Ca 交换器(NCX)将胞质 Ca 去除,使细胞松弛。在患病心脏中,广泛的 VM 重构导致异质性、迟钝和缓慢的 Ca 瞬变。重构变化包括:A)T 小管排列紊乱。B)SERCA2 减少和 SR Ca 降低。然而,这些通常重叠,阻碍了它们对收缩功能障碍(CD)的相对贡献。此外,很少有研究同时评估它们对 Ca 瞬变时空特性和收缩动力学的具体影响。因此,我们试图对具有不同潜在决定因素的异质性和缓慢 Ca 瞬变如何影响收缩性能进行定量比较。
我们使用了两种实验模型:A)甲酰胺诱导的急性“去小管化”,其中 VM 保留功能性 RyR2 和 SERCA2,但缺乏与 T 小管相关的 LCC 和 NCX。B)甲状腺功能减退大鼠的完整 VM,其 SERCA2 和 SR Ca 减少,但 T 小管保持不变。通过 Fluo-4 负载的 VM 的共聚焦成像,在电场刺激下,同时获得 Ca 瞬变和缩短,允许直接相关。
我们发现,由 T 小管破坏或 SR Ca 减少引起的改变的 Ca 瞬变的关键参数之间存在近乎线性的相关性,以及缩短和松弛,具有重要意义:无关的结构和分子改变汇聚在类似的异常 Ca 瞬变和 CD 中,突出了独立重现特定疾病改变的重要性,以定量评估它们对 Ca 信号和收缩性的影响,这对于确定潜在的特定疾病治疗靶点将是有价值的。