Suppr超能文献

缺血性心脏病患者30天再入院和180天院内死亡率风险因素的识别及其相应相对重要性:一种机器学习方法

Identification of risk factors of 30-day readmission and 180-day in-hospital mortality, and its corresponding relative importance in patients with Ischemic heart disease: a machine learning approach.

作者信息

Okere Arinze Nkemdirim, Sanogo Vassiki, Alqhtani Hussain, Diaby Vakaramoko

机构信息

College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Tallahassee, FL, USA.

Department of Pharmaceutical Outcomes and Policy, College of Pharmacy, University of Florida, Gainesville, Florida, United States.

出版信息

Expert Rev Pharmacoecon Outcomes Res. 2021 Oct;21(5):1043-1048. doi: 10.1080/14737167.2021.1842200. Epub 2020 Nov 11.

Abstract

: The primary objective of this study is to identify non-laboratory predictors for 30-day hospital readmission and 180-day in-hospital mortality rates among patients hospitalized with ischemic heart disease (IHD).: This is a retrospective cohort study of hospitalized patients (≥ 40 years) with a primary diagnosis of IHD. Data were extracted from the Florida Agency for Health Care Administration dataset from 2006 to 2016. A machine learning approach was used to identify predictors of 30-day hospital readmission and 180-day in-hospital mortality.: 346,390 patient records for incident IHD cases were identified. The top two predictors of 30-day readmission were the length of stay and the Elixhauser comorbidity index for readmission [ECI] (Area Under the Curve [AUC]=88%) using decision tree algorithms. For in-hospital mortality, the top two predictors were LOS and ECI (AUC=92%) using gradient boosting regressors. The cumulative 30-day readmission and the 180-day probability of mortality rates were 9.82% and 4.6% respectively.: Risk factors of 30-day readmission and 180-day mortality in hospitalized IHD patients identified by machine learning and their relative importance (value) will help pharmacists and other health care providers to prioritize their disease management strategies as they improve the care provided to IHD patients.

摘要

本研究的主要目的是确定缺血性心脏病(IHD)住院患者30天再入院率和180天院内死亡率的非实验室预测因素。

这是一项对主要诊断为IHD的住院患者(≥40岁)的回顾性队列研究。数据从2006年至2016年佛罗里达医疗保健管理局的数据集中提取。采用机器学习方法确定30天再入院率和180天院内死亡率的预测因素。

共识别出346390例IHD事件患者记录。使用决策树算法,30天再入院率的前两个预测因素是住院时间和再入院的埃利克斯豪泽合并症指数[ECI](曲线下面积[AUC]=88%)。对于院内死亡率,前两个预测因素是住院时间和ECI(AUC=92%),使用梯度提升回归器。30天累计再入院率和180天死亡率分别为9.82%和4.6%。

通过机器学习确定的IHD住院患者30天再入院率和180天死亡率的风险因素及其相对重要性(值),将有助于药剂师和其他医疗保健提供者在改善对IHD患者的护理时,对其疾病管理策略进行优先排序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验