Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.
Expert Rev Anti Infect Ther. 2021 Jun;19(6):777-785. doi: 10.1080/14787210.2021.1845653. Epub 2021 Jan 8.
: This study presents demographic and temporal trends in the isolation of Staphylococcus aureus in Vermont clinical microbiology laboratories and explores the use of statistical algorithms and multi-resistance phenotypes to improve outbreak detection.: Routine microbiology test results downloaded from Vermont clinical laboratory information systems were used to monitor S. aureus antimicrobial resistance trends. The integrated WHONET-SaTScan software used multi-resistance phenotypes to identify possible acute outbreaks with the space-time permutation model and slowly emerging geographic clusters using the spatial-only multinomial model.: Data were provided from seven hospital laboratories from 2012 to 2018 for 19,224 S. aureus isolates from 14,939 patients. Statistically significant differences (p ≤ 0.05) in methicillin-resistant S. aureus (MRSA) isolation were seen by age group, specimen type, and health-care setting. Among MRSA, multi-resistance profiles permitted the recognition and tracking of 6 common and 21 rare 'phenotypic clones.' We identified 43 acute MRSA clusters and 7 significant geographic clusters (p ≤ 0.05).: There was significant heterogeneity in MRSA strains between facilities and the use of multi-resistance phenotypes facilitated the recognition of possible outbreaks. Comprehensive electronic surveillance of antimicrobial resistance utilizing routine clinical microbiology data with free software tools offers early recognition and tracking of emerging resistance threats.
: 本研究介绍了佛蒙特州临床微生物学实验室分离金黄色葡萄球菌的人口统计学和时间趋势,并探讨了使用统计算法和多耐药表型来提高暴发检测的方法。:从佛蒙特州临床实验室信息系统下载的常规微生物学测试结果用于监测金黄色葡萄球菌抗菌药物耐药趋势。集成的 WHONET-SaTScan 软件使用多耐药表型,通过时空置换模型识别可能的急性暴发,并使用空间单变量多项模型识别缓慢出现的地理集群。:该研究的数据来自 2012 年至 2018 年的 7 家医院实验室,涉及来自 14939 名患者的 19224 株金黄色葡萄球菌分离株。按年龄组、标本类型和医疗保健环境,耐甲氧西林金黄色葡萄球菌(MRSA)的分离率存在统计学显著差异(p ≤ 0.05)。在 MRSA 中,多耐药表型允许识别和跟踪 6 种常见和 21 种罕见的“表型克隆”。我们确定了 43 个急性 MRSA 集群和 7 个显著的地理集群(p ≤ 0.05)。:各设施之间的 MRSA 菌株存在显著异质性,多耐药表型的使用有助于识别可能的暴发。利用常规临床微生物学数据和免费软件工具进行全面的抗菌药物耐药性电子监测,可以及早发现和跟踪新出现的耐药威胁。