W. K. Kellogg Biological Station, Michigan State University, 3700 East Gull Lake Drive, Hickory Corners, MI 49060, USA.
Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
Philos Trans R Soc Lond B Biol Sci. 2020 Dec 21;375(1814):20190453. doi: 10.1098/rstb.2019.0453. Epub 2020 Nov 2.
Environments change, for both natural and anthropogenic reasons, which can threaten species persistence. Evolutionary adaptation is a potentially powerful mechanism to allow species to persist in these changing environments. To determine the conditions under which adaptation will prevent extinction (evolutionary rescue), classic quantitative genetics models have assumed a constantly changing environment. They predict that species traits will track a moving environmental optimum with a lag that approaches a constant. If fitness is negative at this lag, the species will go extinct. There have been many elaborations of these models incorporating increased genetic realism. Here, we review and explore the consequences of four ecological complications: non-quadratic fitness functions, interacting density- and trait-dependence, species interactions and fundamental limits to adaptation. We show that non-quadratic fitness functions can result in evolutionary tipping points and existential crises, as can the interaction between density- and trait-dependent mortality. We then review the literature on how interspecific interactions affect adaptation and persistence. Finally, we suggest an alternative theoretical framework that considers bounded environmental change and fundamental limits to adaptation. A research programme that combines theory and experiments and integrates across organizational scales will be needed to predict whether adaptation will prevent species extinction in changing environments. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
环境会发生变化,无论是自然的还是人为的原因,这可能会威胁到物种的生存。进化适应是一种潜在的强大机制,可以使物种在这些不断变化的环境中生存。为了确定适应将防止灭绝(进化拯救)的条件,经典的数量遗传学模型假设环境在不断变化。它们预测物种特征将以接近常数的滞后时间跟踪环境最优值的移动。如果在这个滞后时间点适应度为负,那么物种就会灭绝。这些模型已经有了许多增加遗传真实性的改进。在这里,我们回顾并探讨了四个生态复杂性的后果:非二次适应度函数、密度和特征依赖性的相互作用、物种相互作用和适应的基本限制。我们表明,非二次适应度函数可能导致进化临界点和生存危机,密度和特征依赖性死亡率之间的相互作用也是如此。然后,我们回顾了关于种间相互作用如何影响适应和生存的文献。最后,我们提出了一个替代的理论框架,该框架考虑了环境变化的有限性和适应的基本限制。为了预测适应是否能在变化的环境中防止物种灭绝,需要结合理论和实验的研究计划,并在组织尺度上进行整合。本文是主题为“海洋保护的综合研究视角”的一部分。