Bilal Muhammad, Sakairi Masatoshi
Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
J Adv Res. 2020 Jun 27;26:43-51. doi: 10.1016/j.jare.2020.06.019. eCollection 2020 Nov.
Recent advancements in 3D printing technology allow us to design and fabricate customized droplets cells for localized electrochemical patterning.
In this study, 3D printed solution-flow type microdroplet cell (Sf-MDC) is proposed for localized anodizing of two different regions on Al surface. The effect of printing orientation on 3D printing parameters is elucidated to minimize the resin consumption, printing time and material wastage. The capability of Sf-MDC to fabricate porous alumina patterns with adjustable pore size and thickness is explored by varying the length of Pt wire inside each capillary.
The Sf-MDC was optimally fabricated using 3D printer at the highest possible resolution. The Al specimens were electropolished in 13.6 kmolm CH3COOH/2.56 kmolm HClO at 278 K and 28 V for 145 s. 0.22 kmolm oxalic acid (COOH) solution was prepared for anodizing. The specimen was set on pulse-XYZ stage controller and anodized (at 50 V and 323 K) using the Sf-MDC.
Anodizing with Sf-MDC resulted in the formation of two uniformly sized porous alumina lines on the specimen. Porous alumina lines exhibited similar pore geometry, interpore distance and pores arrangement, suggesting uniform supply of current to both the droplets. Layered-type cross-sectional structure with each layer having a thickness of 2.7 mm was formed for both the porous alumina lines. By varying the length of Pt wire inside each capillary, porous alumina lines with different porous structure and oxide thickness were simultaneously fabricated.
Simultaneous anodizing with Sf-MDC can be applied for fast fabrication of porous alumina filters with different porous structure and for various patterning applications.
3D打印技术的最新进展使我们能够设计和制造用于局部电化学图案化的定制微滴电池。
在本研究中,提出了一种3D打印的溶液流动型微滴电池(Sf-MDC),用于在铝表面的两个不同区域进行局部阳极氧化。阐明了打印方向对3D打印参数的影响,以尽量减少树脂消耗、打印时间和材料浪费。通过改变每个毛细管内铂丝的长度,探索了Sf-MDC制造孔径和厚度可调的多孔氧化铝图案的能力。
使用3D打印机以尽可能高的分辨率优化制造Sf-MDC。将铝试样在278K和28V的13.6 kmolm CH3COOH/2.56 kmolm HClO中进行电抛光145秒。制备0.22 kmolm草酸(COOH)溶液用于阳极氧化。将试样放置在脉冲XYZ阶段控制器上,并使用Sf-MDC进行阳极氧化(在50V和323K下)。
使用Sf-MDC进行阳极氧化导致在试样上形成两条尺寸均匀的多孔氧化铝线。多孔氧化铝线表现出相似的孔几何形状、孔间距和孔排列,表明两个微滴都有均匀的电流供应。两条多孔氧化铝线都形成了每层厚度为2.7mm的层状横截面结构。通过改变每个毛细管内铂丝的长度,同时制造出具有不同多孔结构和氧化物厚度的多孔氧化铝线。
使用Sf-MDC同时进行阳极氧化可用于快速制造具有不同多孔结构的多孔氧化铝过滤器以及各种图案化应用。