Suppr超能文献

基于补丁的双树复小波变换在亲属识别中的应用。

Patch-Based Dual-Tree Complex Wavelet Transform for Kinship Recognition.

出版信息

IEEE Trans Image Process. 2021;30:191-206. doi: 10.1109/TIP.2020.3034027. Epub 2020 Nov 18.

Abstract

Kinship recognition is a prominent research aiming to find if kinship relation exists between two different individuals. In general, child closely resembles his/her parents more than others based on facial similarities. These similarities are due to genetically inherited facial features that a child shares with his/her parents. Most existing researches in kinship recognition focus on full facial images to find these kinship similarities. This paper first presents kinship recognition for similar full facial images using proposed Global-based dual-tree complex wavelet transform (G-DTCWT). We then present novel patch-based kinship recognition methods based on dual-tree complex wavelet transform (DT-CWT): Local Patch-based DT-CWT (LP-DTCWT) and Selective Patch-Based DT-CWT (SP-DTCWT). LP-DTCWT extracts coefficients for smaller facial patches for kinship recognition. SP-DTCWT is an extension to LP-DTCWT and extracts coefficients only for representative patches with similarity scores above a normalized cumulative threshold. This threshold is computed by a novel patch selection process. These representative patches contribute more similarities in parent/child image pairs and improve kinship accuracy. Proposed methods are extensively evaluated on different publicly available kinship datasets to validate kinship accuracy. Experimental results showcase efficacy of proposed methods on all kinship datasets. SP-DTCWT achieves competitive accuracy to state-of-the-art methods. Mean kinship accuracy of SP-DTCWT is 95.85% on baseline KinFaceW-I and 95.30% on KinFaceW-II datasets. Further, SP-DTCWT achieves the state-of-the-art accuracy of 80.49% on the largest kinship dataset, Families In the Wild (FIW).

摘要

亲属关系识别是一项旨在确定两个不同个体之间是否存在亲属关系的重要研究。通常情况下,孩子与父母的面部相似度比其他人更高,这是基于面部相似性。这些相似性是由于孩子与父母共享的遗传面部特征。大多数现有的亲属关系识别研究都集中在全脸图像上,以寻找这些亲属关系的相似性。本文首先提出了使用基于全局的双树复小波变换(G-DTCWT)的相似全脸图像的亲属关系识别。然后,我们提出了基于双树复小波变换(DT-CWT)的新的基于补丁的亲属关系识别方法:局部基于补丁的 DT-CWT(LP-DTCWT)和选择性基于补丁的 DT-CWT(SP-DTCWT)。LP-DTCWT 从小的面部补丁中提取系数以进行亲属关系识别。SP-DTCWT 是 LP-DTCWT 的扩展,仅提取相似性得分超过归一化累积阈值的代表性补丁的系数。该阈值由一种新的补丁选择过程计算。这些代表性补丁在父母/孩子图像对中贡献更多的相似性,并提高亲属关系的准确性。所提出的方法在不同的公开可用的亲属关系数据集上进行了广泛的评估,以验证亲属关系的准确性。实验结果展示了所提出的方法在所有亲属关系数据集上的有效性。SP-DTCWT 在基线 KinFaceW-I 和 KinFaceW-II 数据集上达到了与最先进方法相当的准确性。此外,SP-DTCWT 在最大的亲属关系数据集 Families In the Wild(FIW)上实现了 80.49%的最新精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验