Chaves Hernán, Dorr Francisco, Costa Martín Elías, Serra María Mercedes, Slezak Diego Fernández, Farez Mauricio F, Sevlever Gustavo, Yañez Paulina, Cejas Claudia
Diagnostic Imaging Department, Fleni, Buenos Aires, Argentina; Entelai, Buenos Aires, Argentina.
Entelai, Buenos Aires, Argentina.
J Neuroradiol. 2021 May;48(3):147-156. doi: 10.1016/j.neurad.2020.10.001. Epub 2020 Nov 1.
There are instances in which an estimate of the brain volume should be obtained from MRI in clinical practice. Our objective is to calculate cross-sectional robustness of a convolutional neural network (CNN) based software (Entelai Pic) for brain volume estimation and compare it to traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC).
Sixteen HC were scanned four times, two different days on two different MRI scanners (1.5 T and 3 T). Volumetric T1-weighted images were acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement between methods was assessed using intraclass correlation coefficient (ICC) and Bland Altman plots. Robustness was assessed using the coefficient of variation (CV).
Whole-brain volume estimation had better correlation between FreeSurfer and Entelai Pic (ICC (95% CI) 0.96 (0.94-0.97)) than FreeSurfer and CAT12 (0.92 (0.88-0.96)) and FSL (0.87 (0.79-0.91)). WM, GM and CSF showed a similar trend. Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain volumes both on same-scanner (mean CV 1.07, range 0.20-3.13% vs. mean CV 1.05, range 0.21-3.20%, p = 0.86) and on different-scanner variables (mean CV 3.84, range 2.49-5.91% vs. mean CV 3.84, range 2.62-5.13%, p = 0.96). Mean post-processing times were 480, 5, 40 and 5 min for FreeSurfer, Entelai Pic, CAT12 and FSL respectively.
Based on robustness and processing times, our CNN-based model is suitable for cross-sectional volumetry on clinical practice.
在临床实践中,有时需要通过磁共振成像(MRI)来获取脑容量的估计值。我们的目标是计算基于卷积神经网络(CNN)的软件(Entelai Pic)用于脑容量估计的横断面稳健性,并将其与健康对照(HC)中传统软件如FreeSurfer、CAT12和FSL进行比较。
16名健康对照者在两台不同的MRI扫描仪(1.5T和3T)上于两个不同日期进行了4次扫描。采集容积性T1加权图像,并用FreeSurfer v6.0.0、Entelai Pic v2、CAT12 v12.5和FSL v5.0.9进行后处理。计算全脑、灰质(GM)、白质(WM)和脑脊液(CSF)的体积。使用组内相关系数(ICC)和布兰德-奥特曼图评估方法之间的相关性和一致性。使用变异系数(CV)评估稳健性。
与FreeSurfer和CAT12(0.92(0.88 - 0.96))以及FSL(0.87(0.79 - 0.91))相比,FreeSurfer和Entelai Pic在全脑容量估计方面具有更好的相关性(ICC(95%CI)0.96(0.94 - 0.97))。WM、GM和CSF呈现出类似趋势。与FreeSurfer相比,如果在同一台扫描仪上(平均CV 1.07,范围0.20 - 3.13%对平均CV 1.05,范围0.21 - 3.20%,p = 0.86)以及在不同扫描仪变量上(平均CV 3.84,范围2.49 - 5.91%对平均CV 3.84,范围2.62 - 5.13%,p = 0.96),Entelai Pic对脑容量的分割同样稳健。FreeSurfer、Entelai Pic、CAT12和FSL的平均后处理时间分别为480分钟、5分钟、40分钟和5分钟。
基于稳健性和处理时间,我们基于CNN的模型适用于临床实践中的横断面容积测量。