College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China and School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China.
J Chem Phys. 2020 Oct 28;153(16):164707. doi: 10.1063/5.0009582.
Electron transfer in electrocatalysis involves strong short-range electronic interactions and occurs in an electrochemical double layer. Describing the two elements on an equal footing is an essential but challenging task for theoretical electrocatalysis. This work addresses this challenge using a mixed quantum-classical treatment. This treatment features the combination of chemisorption theory, electron transfer theory, and double layer theory in a unifying framework. Electrostatic free energy terms and solvent reorganization energy, key parameters modulating the electron transfer process, are calculated from a three-dimensional continuum double layer model that considers the reactant structure, steric effect, and solvent orientational polarization. The presented model is reduced back to the Marcus theory by neglecting electronic interactions and to the Schmickler theory of electrocatalysis by neglecting double layer effects. Emphasis is placed on understanding the multifaceted double layer effects in electrocatalysis. Apart from modifying the driving force and reactant concentration that are considered in the Frumkin corrections, double layer effects also modulate the interfacial solvent reorganization energy, thus adding a new term to the transfer coefficient. An additional level of intricacy comes into play if the reactant zone needs to replace solvent molecules originally adsorbed on the metal surface when it approaches the metal surface. The resulting free energy penalty shifts the transition state away from the metal surface and thus increases the activation barrier. Understanding how the metal surface charging condition modulates the interfacial stiffness opens an additional channel of deciphering electrolyte effects in electrocatalysis.
电催化中的电子转移涉及强短程电子相互作用,并发生在电化学双层中。平等地描述这两个要素是理论电催化的一项基本但具有挑战性的任务。这项工作使用混合量子经典处理来解决这一挑战。这种处理方法的特点是在统一的框架中结合了化学吸附理论、电子转移理论和双层理论。静电自由能项和溶剂重组能,调节电子转移过程的关键参数,是从考虑反应物结构、空间位阻效应和溶剂取向极化的三维连续双层模型中计算得出的。通过忽略电子相互作用,所提出的模型可以简化为马库斯理论,通过忽略双层效应,可以简化为 Schmickler 电催化理论。重点是理解电催化中多方面的双层效应。除了改变弗鲁姆金修正中考虑的驱动力和反应物浓度外,双层效应还调节界面溶剂重组能,从而向转移系数添加一个新项。如果反应物区域在接近金属表面时需要取代原本吸附在金属表面上的溶剂分子,那么会出现更复杂的情况。由此产生的自由能惩罚会使过渡态远离金属表面,从而增加活化能垒。了解金属表面充电条件如何调节界面刚度,为解析电催化中的电解质效应开辟了另一个途径。