Suppr超能文献

基于力不平衡的磁悬浮球二维外部磁驱动方法研究

Research on two-dimensional external magnetic drive method of maglev ball based on force imbalance.

作者信息

Liu Guancheng, Lu Yonghua, Liu Yang, Dong Zhiyuan, Ye Zhibin

机构信息

College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China.

Aviation University Air Force, 220100 Changchun, China.

出版信息

Rev Sci Instrum. 2020 Oct 1;91(10):105003. doi: 10.1063/5.0017776.

Abstract

In this paper, an external magnetic driving method of a maglev ball based on force imbalance is first proposed to meet the requirement that the maglev ball is moved linearly in the axis direction of the electromagnetic actuator in the non-liquid environment. This method is expected to be better applied in the fields of industrial and medical miniature curved tube. The maglev ball is a magnetic levitated object. Based on the interpolation algorithm, the two-dimensional stepwise levitation motion trajectory of the maglev ball is designed as the target curve of the motion. The maglev ball can be driven with a large range along a specified motion path. Compared with the 1.0 mm step input, the overshoot of a 0.2 mm step input is decreased by 73.7% and 73.6% in the descending phase and the ascending phase, respectively. Therefore, fluctuation of the step response of the maglev ball is improved by smaller step control. However, the larger the step input, the faster the speed and the larger the levitation gap. Under the condition of a 1.0 mm step input, the maximum levitation gap can be up to 20.487 mm, and the speed of the maglev ball can reach 3.086 mm/s. Compared with static levitation control, the position of the maglev ball is fluctuated severely due to radial runout under motion control conditions, and the position accuracy can reach ±0.03 mm.

摘要

本文首次提出了一种基于力不平衡的磁悬浮球外部磁驱动方法,以满足磁悬浮球在非液体环境中沿电磁致动器轴线方向线性移动的要求。该方法有望更好地应用于工业和医疗微型弯管领域。磁悬浮球是一种磁悬浮物体。基于插值算法,将磁悬浮球的二维逐步悬浮运动轨迹设计为运动的目标曲线。磁悬浮球可以沿着指定的运动路径进行大范围驱动。与1.0mm的阶跃输入相比,0.2mm阶跃输入在下降阶段和上升阶段的超调量分别降低了73.7%和73.6%。因此,通过较小的阶跃控制提高了磁悬浮球阶跃响应的波动。然而,阶跃输入越大,速度越快,悬浮间隙越大。在1.0mm阶跃输入的条件下,最大悬浮间隙可达20.487mm,磁悬浮球的速度可达3.086mm/s。与静态悬浮控制相比,在运动控制条件下,磁悬浮球的位置由于径向跳动而波动剧烈,位置精度可达±0.03mm。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验