G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, CA, USA.
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Transl Psychiatry. 2020 Nov 2;10(1):367. doi: 10.1038/s41398-020-01071-2.
Alterations in brain-gut-microbiome (BGM) interactions have been implicated in the pathogenesis of irritable bowel syndrome (IBS). Here, we apply a systems biology approach, leveraging neuroimaging and fecal metabolite data, to characterize BGM interactions that are driving IBS pathophysiology. Fecal samples and resting state fMRI images were obtained from 138 female subjects (99 IBS, 39 healthy controls (HCs)). Partial least-squares discriminant analysis (PLS-DA) was conducted to explore group differences, and partial correlation analysis explored significantly changed metabolites and neuroimaging data. All correlational tests were performed controlling for age, body mass index, and diet; results are reported after FDR correction, with q < 0.05 as significant. Compared to HCs, IBS showed increased connectivity of the putamen with regions of the default mode and somatosensory networks. Metabolite pathways involved in nucleic acid and amino acid metabolism differentiated the two groups. Only a subset of metabolites, primarily amino acids, were associated with IBS-specific brain changes, including tryptophan, glutamate, and histidine. Histidine was the only metabolite positively associated with both IBS-specific alterations in brain connectivity. Our findings suggest a role for several amino acid metabolites in modulating brain function in IBS. These metabolites may alter brain connectivity directly, by crossing the blood-brain-barrier, or indirectly through peripheral mechanisms. This is the first study to integrate both neuroimaging and fecal metabolite data supporting the BGM model of IBS, building the foundation for future mechanistic studies on the influence of gut microbial metabolites on brain function in IBS.
脑-肠-微生物群(BGM)相互作用的改变与肠易激综合征(IBS)的发病机制有关。在这里,我们应用系统生物学方法,利用神经影像学和粪便代谢物数据,来描述驱动 IBS 病理生理学的 BGM 相互作用。从 138 名女性受试者(99 名 IBS,39 名健康对照(HCs))中获得粪便样本和静息状态 fMRI 图像。采用偏最小二乘判别分析(PLS-DA)来探索组间差异,采用偏相关分析来探索显著变化的代谢物和神经影像学数据。所有相关性检验均在控制年龄、体重指数和饮食的情况下进行;经 FDR 校正后报告结果,q < 0.05 为显著。与 HCs 相比,IBS 表现出壳核与默认模式和躯体感觉网络区域的连接增加。涉及核酸和氨基酸代谢的代谢物途径将两组区分开来。只有一部分代谢物,主要是氨基酸,与 IBS 特异性的大脑变化相关,包括色氨酸、谷氨酸和组氨酸。组氨酸是唯一与 IBS 特异性脑连接改变呈正相关的代谢物。我们的研究结果表明,几种氨基酸代谢物在调节 IBS 中的大脑功能方面发挥作用。这些代谢物可能通过血脑屏障直接改变脑连接,也可能通过外周机制间接改变。这是第一项整合神经影像学和粪便代谢物数据以支持 IBS 的 BGM 模型的研究,为未来研究肠道微生物代谢物对 IBS 中大脑功能的影响的机制研究奠定了基础。
Neuropharmacology. 2023-3-1
Front Cell Infect Microbiol. 2019-10-18
Brain Behav Immun Health. 2025-7-4
Metabolites. 2025-2-12
ACS Chem Neurosci. 2023-5-17
Neuropharmacology. 2023-3-1
Curr Opin Pharmacol. 2019-10-14
J Neuroinflammation. 2019-3-1
J Neurogastroenterol Motil. 2018-10-1
Clin Gastroenterol Hepatol. 2018-10-4
Cell Mol Gastroenterol Hepatol. 2018-4-12
J Neurogastroenterol Motil. 2017-7-30