文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

同时进行皮层荧光钙成像和全脑 fMRI。

Simultaneous cortex-wide fluorescence Ca imaging and whole-brain fMRI.

机构信息

Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.

Department of Neurobiology, Yale School of Medicine, Yale University, New Haven, CT, United States.

出版信息

Nat Methods. 2020 Dec;17(12):1262-1271. doi: 10.1038/s41592-020-00984-6. Epub 2020 Nov 2.


DOI:10.1038/s41592-020-00984-6
PMID:33139894
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7704940/
Abstract

Achieving a comprehensive understanding of brain function requires multiple imaging modalities with complementary strengths. We present an approach for concurrent widefield optical and functional magnetic resonance imaging. By merging these modalities, we can simultaneously acquire whole-brain blood-oxygen-level-dependent (BOLD) and whole-cortex calcium-sensitive fluorescent measures of brain activity. In a transgenic murine model, we show that calcium predicts the BOLD signal, using a model that optimizes a gamma-variant transfer function. We find consistent predictions across the cortex, which are best at low frequency (0.009-0.08 Hz). Furthermore, we show that the relationship between modality connectivity strengths varies by region. Our approach links cell-type-specific optical measurements of activity to the most widely used method for assessing human brain function.

摘要

实现对大脑功能的全面理解需要多种具有互补优势的成像模式。我们提出了一种同时进行宽场光学和功能磁共振成像的方法。通过合并这些模式,我们可以同时获得全脑血氧水平依赖(BOLD)和全皮质钙敏荧光测量的大脑活动。在转基因小鼠模型中,我们使用优化伽马变体传递函数的模型表明,钙可以预测 BOLD 信号。我们发现皮质中存在一致的预测,其在低频(0.009-0.08 Hz)下效果最佳。此外,我们还表明,模态连接强度之间的关系因区域而异。我们的方法将活动的细胞类型特异性光学测量与评估人类大脑功能最广泛使用的方法联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/936b7833052b/nihms-1631388-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/718e4312305a/nihms-1631388-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/f0eeab1c75b8/nihms-1631388-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/b301085acecc/nihms-1631388-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/a71e7f6f9eea/nihms-1631388-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/1930e89b15c1/nihms-1631388-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/0151a11b23b6/nihms-1631388-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/72e011325aa0/nihms-1631388-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/65f90eaf6207/nihms-1631388-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/09d2109481d5/nihms-1631388-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/ed7361eb866d/nihms-1631388-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/b6774af009b3/nihms-1631388-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/ba831f071fb8/nihms-1631388-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/f4f57bb0b1e2/nihms-1631388-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/a707aec62fab/nihms-1631388-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/c2252a1101a2/nihms-1631388-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/936b7833052b/nihms-1631388-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/718e4312305a/nihms-1631388-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/f0eeab1c75b8/nihms-1631388-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/b301085acecc/nihms-1631388-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/a71e7f6f9eea/nihms-1631388-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/1930e89b15c1/nihms-1631388-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/0151a11b23b6/nihms-1631388-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/72e011325aa0/nihms-1631388-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/65f90eaf6207/nihms-1631388-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/09d2109481d5/nihms-1631388-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/ed7361eb866d/nihms-1631388-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/b6774af009b3/nihms-1631388-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/ba831f071fb8/nihms-1631388-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/f4f57bb0b1e2/nihms-1631388-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/a707aec62fab/nihms-1631388-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/c2252a1101a2/nihms-1631388-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949b/7704940/936b7833052b/nihms-1631388-f0006.jpg

相似文献

[1]
Simultaneous cortex-wide fluorescence Ca imaging and whole-brain fMRI.

Nat Methods. 2020-12

[2]
Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology.

Neuroimage. 2017-12-22

[3]
Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice.

Nat Protoc. 2018-3-29

[4]
Resting state brain function analysis using concurrent BOLD in ASL perfusion fMRI.

PLoS One. 2013-6-4

[5]
The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal.

Philos Trans R Soc Lond B Biol Sci. 2002-8-29

[6]
Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

Neuroimage. 2013-2-1

[7]
Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging.

J Neurophysiol. 2020-1-1

[8]
In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease.

Neuroimage. 2019-6-7

[9]
Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

NMR Biomed. 2015-11

[10]
Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice.

Elife. 2021-3-8

引用本文的文献

[1]
Interhemispheric resting-state functional connectivity correlates with spontaneous neural interactions.

Proc Natl Acad Sci U S A. 2025-8-26

[2]
Charting the path in rodent functional neuroimaging.

Imaging Neurosci (Camb). 2025-5-28

[3]
Temporal variability of brain-behavior relationships in fine-scale dynamics of edge time series.

Imaging Neurosci (Camb). 2025-1-23

[4]
The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing.

Imaging Neurosci (Camb). 2024-4-18

[5]
Computational mechanisms of neuroimaging biomarkers uncovered by multicenter resting-state fMRI connectivity variation profile.

Mol Psychiatry. 2025-8-7

[6]
Photoacoustic and fluorescence hybrid microscope for cortex-wide imaging of neurovascular dynamics with subcellular resolution.

Sci Adv. 2025-7-25

[7]
Advanced preclinical functional magnetic resonance imaging of the brain.

Npj Imaging. 2025-6-18

[8]
Immediate glucose signaling transmitted via the vagus nerve in gut-brain neural communication.

iScience. 2025-5-5

[9]
Multimodal identification of the mouse brain using simultaneous Ca imaging and fMRI.

Commun Biol. 2025-4-26

[10]
Evidence for a push-pull interaction between superior colliculi in monocular dynamic vision mode.

Commun Biol. 2025-4-22

本文引用的文献

[1]
Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits.

Nat Methods. 2019-11-4

[2]
The impact of fasting on resting state brain networks in mice.

Sci Rep. 2019-2-27

[3]
Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2018-12-12

[4]
Identifying Respiration-Related Aliasing Artifacts in the Rodent Resting-State fMRI.

Front Neurosci. 2018-11-2

[5]
Imaging-based parcellations of the human brain.

Nat Rev Neurosci. 2018-11

[6]
A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality.

Cell. 2018-7-12

[7]
Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice.

Nat Protoc. 2018-3-29

[8]
Brain-state dependent astrocytic Ca signals are coupled to both positive and negative BOLD-fMRI signals.

Proc Natl Acad Sci U S A. 2018-1-30

[9]
Resting-state functional MRI reveals altered brain connectivity and its correlation with motor dysfunction in a mouse model of Huntington's disease.

Sci Rep. 2017-12-1

[10]
Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent "Resting-State" Connectivity.

Neuron. 2017-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索