Ehrhardt Dorothee, Mangialetto Jessica, Bertouille Jolien, Van Durme Kurt, Van Mele Bruno, Van den Brande Niko
Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
Organic Chemistry (ORGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
Polymers (Basel). 2020 Oct 30;12(11):2543. doi: 10.3390/polym12112543.
Two reversible polymer networks, based on Diels-Alder cycloadditions, are selected to discuss the opportunities of mobility-controlled self-healing in ambient conditions for which information is lacking in literature. The main methods for this study are (modulated temperature) differential scanning calorimetry, microcalorimetry, dynamic rheometry, dynamic mechanical analysis, and kinetic simulations. The reversible network 3M-3F630 is chosen to study the conceptual aspects of diffusion-controlled Diels-Alder reactions from 20 to 65 °C. Network formation by gelation is proven and above 30 °C gelled glasses are formed, while cure below 30 °C gives ungelled glasses. The slow progress of Diels-Alder reactions in mobility-restricted conditions is proven by the further increase of the system's glass transition temperature by 24 °C beyond the cure temperature of 20 °C. These findings are employed in the reversible network 3M-F375PMA, which is UV-polymerized, starting from a Diels-Alder methacrylate pre-polymer. Self-healing of microcracks in diffusion-controlled conditions is demonstrated at 20 °C. De-gelation measurements show the structural integrity of both networks up to at least 150 °C. Moreover, mechanical robustness in 3M-F375PMA is maintained by the poly(methacrylate) chains to at least 120 °C. The self-healing capacity is simulated in an ambient temperature window between -40 and 85 °C, supporting its applicability as self-healing encapsulant in photovoltaics.
基于狄尔斯-阿尔德环加成反应,选择了两种可逆聚合物网络,以探讨在环境条件下进行迁移率控制的自愈的机会,而这方面的文献资料尚缺。本研究的主要方法有(调制温度)差示扫描量热法、微量量热法、动态流变学、动态力学分析和动力学模拟。选择可逆网络3M-3F630来研究20至65°C范围内扩散控制的狄尔斯-阿尔德反应的概念性方面。通过凝胶化证明了网络的形成,在30°C以上形成了凝胶化玻璃,而在30°C以下固化则得到未凝胶化玻璃。在迁移率受限的条件下,狄尔斯-阿尔德反应进展缓慢,这通过系统的玻璃化转变温度在20°C的固化温度之上进一步升高24°C得到证明。这些发现应用于可逆网络3M-F375PMA,它是由一种狄尔斯-阿尔德甲基丙烯酸酯预聚物通过紫外线聚合而成。在20°C下展示了扩散控制条件下微裂纹的自愈。脱凝胶测量表明两个网络在至少150°C时的结构完整性。此外,3M-F375PMA中的机械强度通过聚(甲基丙烯酸酯)链保持到至少120°C。在-40至85°C的环境温度窗口内模拟了自愈能力,支持其作为光伏中的自愈封装材料的适用性。